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We examine the hypothesis that consciousness can be understood as a state of matter, “perceptro-
nium”, with distinctive information processing abilities. We explore five basic principles that may
distinguish conscious matter from other physical systems such as solids, liquids and gases: the infor-
mation, integration, independence, dynamics and utility principles. If such principles can identify
conscious entities, then they can help solve the quantum factorization problem: why do conscious
observers like us perceive the particular Hilbert space factorization corresponding to classical space
(rather than Fourier space, say), and more generally, why do we perceive the world around us as
a dynamic hierarchy of objects that are strongly integrated and relatively independent? Tensor
factorization of matrices is found to play a central role, and our technical results include a theorem
about Hamiltonian separability (defined using Hilbert-Schmidt superoperators) being maximized in
the energy eigenbasis. Our approach generalizes Giulio Tononi’s integrated information framework
for neural-network-based consciousness to arbitrary quantum systems, and we find interesting links
to error-correcting codes, condensed matter criticality, and the Quantum Darwinism program, as
well as an interesting connection between the emergence of consciousness and the emergence of time.

I. INTRODUCTION

What is the relation between the internal reality of
your mind and the external reality described by the equa-
tions of physics? The fact that no consensus answer to
this question has emerged in the physics community lies
at the heart of many of the most hotly debated issues
in physics today. For example, how does quantum field
theory with weak-field gravity explain the appearance of
an approximately classical spacetime where experiments
appear to have definite outcomes? Out of all of the pos-
sible factorizations of Hilbert space, why is the particular
factorization corresponding to classical space so special?
Does the quantum wavefunction undergo a non-unitary
collapse when an observation is made, or are there Ev-
erettian parallel universes? Does the non-observability
of spacetime regions beyond horizons imply that they
in some sense do not exist independently of the regions
that we can observe? If we understood consciousness as a
physical phenomenon, we could in principle answer all of
these questions by studying the equations of physics: we
could identify all conscious entities in any physical sys-
tem, and calculate what they would perceive. However,
this approach is typically not pursued by physicists, with
the argument that we do not understand consciousness
well enough.

In this paper, I argue that recent progress in neuro-
science has fundamentally changed this situation, and
that we physicists can no longer blame neuroscientists
for our own lack of progress. I have long contended
that consciousness is the way information feels when be-
ing processed in certain complex ways [1, 2], i.e., that
it corresponds to certain complex patterns in spacetime
that obey the same laws of physics as other complex sys-
tems, with no “secret sauce” required. In the seminal pa-
per “Consciousness as Integrated Information: a Provi-
sional Manifesto” [3], Giulio Tononi made this idea more
specific and useful, making a compelling argument that

for an information processing system to be conscious, it
needs to have two separate traits:

1. Information: It has to have a large repertoire of
accessible states, i.e., the ability to store a large
amount of information.

2. Integration: This information must be integrated
into a unified whole, i.e., it must be impossible
to decompose the system into nearly independent
parts.

Tononi’s work has generated a flurry of activity in the
neuroscience community, spanning the spectrum from
theory to experiment (see [4, 5] for recent reviews), mak-
ing it timely to investigate its implications for physics as
well. This is the goal of the present paper — a goal whose
pursuit may ultimately provide additional tools for the
neuroscience community as well.

A. Consciousness as a state of matter

Generations of physicists and chemists have studied
what happens when you group together vast numbers of
atoms, finding that their collective behavior depends on
the pattern in which they are arranged: the key differ-
ence between a solid, a liquid and a gas lies not in the
types of atoms, but in their arrangement. In this pa-
per, I conjecture that consciousness can be understood
as yet another state of matter. Just as there are many
types of liquids, there are many types of consciousness.
However, this should not preclude us from identifying,
quantifying, modeling and ultimately understanding the
characteristic properties that all liquid forms of matter
(or all conscious forms of matter) share.

To classify the traditionally studied states of matter,
we need to measure only a small number of physical pa-
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Many
State of long-lived Information Easily Complex?
matter states? integrated? writable? dynamics?
Gas N N N Y
Liquid N N N Y
Solid Y N N N
Memory Y N Y N
Computer Y ? Y Y
Consciousness Y Y Y Y

TABLE I: Substances that store or process information can
be viewed as novel states of matter and investigated with
traditional physics tools.

rameters: viscosity, compressibility, electrical conductiv-
ity and (optionally) diffusivity. We call a substance a
solid if its viscosity is effectively infinite (producing struc-
tural stiffness), and call it a fluid otherwise. We call
a fluid a liquid if its compressibility and diffusivity are
small and otherwise call it either a gas or a plasma, de-
pending on its electrical conductivity.

What are the corresponding physical parameters that
can help us identify conscious matter, and what are the
key physical features that characterize it? If such param-
eters can be identified, understood and measured, this
will help us identify (or at least rule out) consciousness
“from the outside”, without access to subjective intro-
spection. This could be important for reaching consen-
sus on many currently controversial topics, ranging from
the future of artificial intelligence to determining when
an animal, fetus or unresponsive patient can feel pain.
If would also be important for fundamental theoretical
physics, by allowing us to identify conscious observers
in our universe by using the equations of physics and
thereby answer thorny observation-related questions such
as those mentioned in the introductory paragraph.

B. Memory

As a first warmup step toward consciousness, let us
first consider a state of matter that we would character-
ize as memory — what physical features does it have?
For a substance to be useful for storing information, it
clearly needs to have a large repertoire of possible long-
lived states or attractors (see Table I). Physically, this
means that its potential energy function has a large num-
ber of well-separated minima. The information storage
capacity (in bits) is simply the base-2 logarithm of the
number of minima. This equals the entropy (in bits)
of the degenerate ground state if all minima are equally
deep. For example, solids have many long-lived states,
whereas liquids and gases do not: if you engrave some-
one’s name on a gold ring, the information will still be
there years later, but if you engrave it in the surface of a
pond, it will be lost within a second as the water surface
changes its shape. Another desirable trait of a memory

substance, distinguishing it from generic solids, is that it
is not only easy to read from (as a gold ring), but also
easy to write to: altering the state of your hard drive or
your synapses requires less energy than engraving gold.

C. Computronium

As a second warmup step, what properties should we
ascribe to what Margolus and Toffoli have termed “com-
putronium” [6], the most general substance that can pro-
cess information as a computer? Rather than just re-
main immobile as a gold ring, it must exhibit complex
dynamics so that its future state depends in some com-
plicated (and hopefully controllable/programmable) way
on the present state. Its atom arrangement must be
less ordered than a rigid solid where nothing interest-
ing changes, but more ordered than a liquid or gas. At
the microscopic level, computronium need not be par-
ticularly complicated, because computer scientists have
long known that as long as a device can perform certain
elementary logic operations, it is universal: it can be pro-
grammed to perform the same computation as any other
computer with enough time and memory. Computer
vendors often parametrize computing power in FLOPS,
floating-point operations per second for 64-bit numbers;
more generically, we can parametrize computronium ca-
pable of universal computation by “FLIPS”: the number
of elementary logical operations such as bit flips that it
can perform per second. It has been shown by Lloyd
[7] that a system with average energy E can perform a
maximum of 4E/h elementary logical operations per sec-
ond, where h is Planck’s constant. The performance of
today’s best computers is about 38 orders of magnitude
lower than this, because they use huge numbers of parti-
cles to store each bit and because most of their energy is
tied up in a computationally passive form, as rest mass.

D. Perceptronium

What about “perceptronium”, the most general sub-
stance that feels subjectively self-aware? If Tononi is
right, then it should not merely be able to store and pro-
cess information like computronium does, but it should
also satisfy the principle that its information is inte-
grated, forming a unified and indivisible whole.

Let us also conjecture another principle that conscious
systems must satisfy: that of autonomy, i.e., that in-
formation can be processed with relative freedom from
external influence. Autonomy is thus the combination
of two separate properties: dynamics and independence.
Here dynamics means time dependence (hence informa-
tion processing capacity) and independence means that
the dynamics is dominated by forces from within rather
than outside the system. Just like integration, autonomy
is postulated to be a necessary but not sufficient condi-
tion for a system to be conscious: for example, clocks
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Principle Definition
Information A conscious system has substantial

principle information storage capacity.
Dynamics A conscious system has substantial

principle information processing capacity.
Independence A conscious system has substantial

principle independence from the rest of the world.
Integration A conscious system cannot consist of

principle nearly independent parts.
Utility A conscious system records mainly

principle information that is useful for it.
Autonomy A conscious system has substantial

principle dynamics and independence.

TABLE II: Conjectured necessary conditions for conscious-
ness that we explore in this paper. The last one simply com-
bines the second and third.

and diesel generators tend to exhibit high autonomy, but
lack substantial information storage capacity.

E. Consciousness and the quantum factorization
problem

Table II summarizes the candidate principles that we
will explore as necessary conditions for consciousness.
Our goal with isolating and studying these principles is
not merely to strengthen our understanding of conscious-
ness as a physical process, but also to identify simple
traits of conscious matter that can help us tackle other
open problems in physics. For example, the only property
of consciousness that Hugh Everett needed to assume for
his work on quantum measurement was that of the infor-
mation principle: by applying the Schrödinger equation
to systems that could record and store information, he
inferred that they would perceive subjective randomness
in accordance with the Born rule. In this spirit, we might
hope that adding further simple requirements such as in
the integration principle, the independence principle and
the dynamics principle might suffice to solve currently
open problems related to observation.

In this paper, we will pay particular attention to what
I will refer to as the quantum factorization problem:
why do conscious observers like us perceive the particu-
lar Hilbert space factorization corresponding to classical
space (rather than Fourier space, say), and more gener-
ally, why do we perceive the world around us as a dy-
namic hierarchy of objects that are strongly integrated
and relatively independent? This fundamental problem
has received almost no attention in the literature [9]. We
will see that this problem is very closely related to the
one Tononi confronted for the brain, merely on a larger
scale. Solving it would also help solve the “physics-from-
scratch” problem [2]: If the Hamiltonian H and the total
density matrix ρ fully specify our physical world, how
do we extract 3D space and the rest of our semiclassical
world from nothing more than two Hermitian matrices,

which come without any a priori physical interpretation
or additional structure such as a physical space, quan-
tum observables, quantum field definitions, an “outside”
system, etc.? Can some of this information be extracted
even from H alone, which is fully specified by nothing
more than its eigenvalue spectrum? We will see that a
generic Hamiltonian cannot be decomposed using tensor
products, which would correspond to a decomposition of
the cosmos into non-interacting parts — instead, there is
an optimal factorization of our universe into integrated
and relatively independent parts. Based on Tononi’s
work, we might expect that this factorization, or some
generalization thereof, is what conscious observers per-
ceive, because an integrated and relatively autonomous
information complex is fundamentally what a conscious
observer is!

The rest of this paper is organized as follows. In Sec-
tion II, we explore the integration principle by quanti-
fying integrated information in physical systems, finding
encouraging results for classical systems and interesting
challenges introduced by quantum mechanics. In Sec-
tion III, we explore the independence principle, finding
that at least one additional principle is required to ac-
count for the observed factorization of our physical world
into an object hierarchy in three-dimensional space. In
Section IV, we explore the dynamics principle and other
possibilities for reconciling quantum-mechanical theory
with our observation of a semiclassical world. We discuss
our conclusions in Section V, including applications of
the utility principle, and cover various mathematical de-
tails in the three appendices. Throughout the paper, we
mainly consider finite Hilbert spaces that can be viewed
as collections of qubits; as explained in Appendix C, this
appears to cover standard quantum field theory with its
infinite Hilbert space as well.

II. INTEGRATION

A. Our physical world as an object hierarchy

One of the most striking features of our physical world
is that we perceive it as an object hierarchy, as illustrated
in Figure 1. If you are enjoying a cold drink, you per-
ceive ice cubes in your glass as separate objects because
they are both fairly integrated and fairly independent,
e.g., their parts are more strongly connected to one an-
other than to the outside. The same can be said about
each of their constituents, ranging from water molecules
all the way down to electrons and quarks. Let us quan-
tify this by defining the robustness of an object as the
ratio of the integration temperature (the energy per part
needed to separate them) to the independence tempera-
ture (the energy per part needed to separate the parent
object in the hierarchy). Figure 1 illustrates that all of
the ten types of objects shown have robustness of ten
or more. A highly robust object preserves its identity
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Object:   Oxygen atom
Robustness: 10
Independence T: 1 eV
Integration T:   10 eV

Object:   Oxygen nucleus
Robustness: 105

Independence T: 10 eV
Integration T:   1 MeV

Object:   Proton
Robustness: 200
Independence T:  1 MeV
Integration T:  200 MeV

Object:   Neutron
Robustness: 200
Independence T:  1 MeV
Integration T:  200 MeV

Object:   Electron
Robustness: 1022?
Independence T:  10 eV
Integration T:  1016 GeV?

Object:   Down quark
Robustness: 1017?
Independence T: 200 MeV
Integration T:  1016 GeV?

Object:   Up quark
Robustness: 1017?
Independence T: 200 MeV
Integration T:  1016 GeV?

Object:   Hydrogen atom
Robustness: 10
Independence T: 1 eV
Integration T:   10 eV

Object:   Ice cube
Robustness: 105

Independence T:  3 mK
Integration T:  300 K

Object:   Water molecule
Robustness: 40
Independence T:  300 K
Integration T:  1 eV

{mgh/kB
~3mK per
molecule

FIG. 1: We perceive the external world as a hierarchy of objects, whose parts are more strongly connected to one another
than to the outside. The robustness of an object is defined as the ratio of the integration temperature (the energy per part
needed to separate them) to the independence temperature (the energy per part needed to separate the parent object in the
hierarchy).

(its integration and independence) over a wide range of
temperatures/energies/situations. The more robust an
object is, the more useful it is for us humans to perceive
it as an object and coin a name for it, as per the above-
mentioned utility principle.

Returning to the “physics-from-scratch” problem, how
can we identify this object hierarchy if all we have to
start with are two Hermitian matrices, the density ma-
trix ρ encoding the state of our world and the Hamilto-
nian H determining its time-evolution? Imagine that we
know only these mathematical objects ρ and H and have
no information whatsoever about how to interpret the
various degrees of freedom or anything else about them.
A good beginning is to study integration. Consider, for

example, ρ and H for a single deuterium atom, whose
Hamiltonian is (ignoring spin interactions for simplicity)

H(rp,pp, rn,pn, re,pe) = (1)

= H1(rp,pp, rn,pn) + H2(pe) + H3(rp,pp, rn,pn, re,pe),

where r and p are position and momentum vectors, and
the subscripts p, n and e refer to the proton, the neutron
and the electron. On the second line, we have decom-
posed H into three terms: the internal energy of the
proton-neutron nucleus, the internal (kinetic) energy of
the electron, and the electromagnetic electron-nucleus in-
teraction. This interaction is tiny, on average involving
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much less energy than those within the nucleus:

tr H3ρ

tr H1ρ
∼ 10−5, (2)

which we recognize as the inverse robustness for a typical
nucleus in Figure 3. We can therefore fruitfully approx-
imate the nucleus and the electron as separate objects
that are almost independent, interacting only weakly
with one another. The key point here is that we could
have performed this object-finding exercise of dividing
the variables into two groups to find the greatest indepen-
dence (analogous to what Tononi calls “the cruelest cut”)
based on the functional form of H alone, without even
having heard of electrons or nuclei, thereby identifying
their degrees of freedom through a purely mathematical
exercise.

B. Integration and mutual information

If the interaction energy H3 were so small that we
could neglect it altogether, then H would be decompos-
able into two parts H1 and H2, each one acting on only
one of the two sub-systems (in our case the nucleus and
the electron). This means that any thermal state would
be factorizable:

ρ ∝ e−H/kT = e−H1/kT e−H2/kT = ρ1ρ2, (3)

so the total state ρ can be factored into a product of
the subsystem states ρ1 and ρ2. In this case, the mutual
information

I ≡ S(ρ1) + S(ρ2)− S(ρ) (4)

vanishes, where

S(ρ) ≡ −tr ρ log2 ρ (5)

is the Shannon entropy (in bits). Even for non-thermal
states, the time-evolution operator U becomes separable:

U ≡ eiHt/~ = eiH1t/~eiH2t/~ = U1U2, (6)

which (as we will discuss in detail in Section III) implies
that the mutual information stays constant over time and
no information is ever exchanged between the objects. In
summary, if a Hamiltonian can be decomposed without
an interaction term (with H3 = 0), then it describes two
perfectly independent systems.

Let us now consider the opposite case, when a sys-
tem cannot be decomposed into independent parts. Let
us define the integrated information Φ as the mutual in-
formation I for the “cruelest cut” (the cut minimizing
I) in some class of cuts that subdivide the system into
two (we will discuss many different classes of cuts be-
low). Although our Φ-definition is slightly different from

Tononi’s [3]1, it is similar in spirit, and we are reusing his
Φ-symbol for its elegant symbolism (unifying the shapes
of I for information and O for integration).

C. Maximizing integration

We just saw that if two systems are dynamically inde-
pendent (H3 = 0), then Φ = 0 at all time both for ther-
mal states and for states that were independent (Φ = 0)
at some point in time. Let us now consider the oppo-
site extreme. How large can the integrated information
Φ get? A as warmup example, let us consider the fa-
miliar 2D Ising model in Figure 2 where n = 2500 mag-
netic dipoles (or spins) that can point up or down are
placed on a square lattice, and H is such that they pre-
fer aligning with their nearest neighbors. When T →∞,
ρ ∝ e−H/kT → I, so all n states are equally likely, all
n bits are statistically independent, and Φ = 0. When
T → 0, all states freeze out except the two degenerate
ground states (all spin up or all spin down), so all spins
are perfectly correlated and Φ = 1 bit. For interme-
diate temperatures, long-range correlations are seen to
exist such that typical states have contiguous spin-up or
spin-down patches. On average, we get about one bit of
mutual information for each such patch crossing our cut
(since a spin on one side “knows” about at a spin on the
other side), so for bipartitions that cut the system into
two equally large halves, the mutual information will be
proportional to the length of the cutting curve. The “cru-
elest cut” is therefore a vertical or horizontal straight line
of length n1/2, giving Φ ∼ n1/2 at the temperature where
typical patches are only a few pixels wide. We would sim-
ilarly get a maximum integration Φ ∼ n1/3 for a 3D Ising
system and Φ ∼ 1 bit for a 1D Ising system.

Since it is the spatial correlations that provide the in-
tegration, it is interesting to speculate about whether
the conscious subsystem of our brain is a system near its
critical temperature, close to a phase transition. Indeed,
Damasio has argued that to be in homeostasis, a num-
ber of physical parameters of our brain need to be kept
within a narrow range of values [10] — this is precisely
what is required of any condensed matter system to be
near-critical, exhibiting correlations that are long-range
(providing integration) but not so strong that the whole
system becomes correlated like in the right panel or in a
brain experiencing an epileptic seizure.

1 Tononi’s definition of Φ [3] applies only for classical systems,
whereas we wish to study the quantum case as well. Our Φ is
measured in bits and can grow with system size like an extrinsic
variable, whereas his is an intrinsic variable akin representing a
sort of average integration per bit.
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More
correlation

Too little Too muchOptimum UniformRandom

Less
correlation

FIG. 2: The panels show simulations of the 2D Ising model on a 50× 50 lattice, with the temperature progressively decreasing
from left to right. The integrated information Φ drops to zero bits at T → ∞ (leftmost panel) and to one bit as T → 0
(rightmost panel), taking a maximum at an intermediate temperature near the phase transition temperature.

D. Integration, coding theory and error correction

Bits cut off

In
te

gr
at
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 in
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rm

at
io

n Hamming 
(8,4)-code

(16 8-bit strings)

16 random 
8-bit strings

128 8-bit strings
with checksum bit

2 4 6 8

1

2

3

4

FIG. 3: For various 8-bit systems, the integrated information
is plotted as a function of the number of bits cut off into a
sub-system with the “cruelest cut”. The Hamming (8,4)-code
is seen to give classically optimal integration except for a bi-
partition into 4 + 4 bits: an arbitrary subset containing no
more than three bits is completely determined by the remain-
ing bits. The code consisting of the half of all 8-bit strings
whose bit sum is even (i.e., each of the 128 7-bit strings fol-
lowed by a parity checksum bit) has Hamming distance d = 2
and gives Φ = 1 however many bits are cut off. A random set
of 16 8-bit strings is seen to outperform the Hamming (8,4)-
code for 4+4-bipartitions, but not when fewer bits are cut off.

Even when we tuned the temperature to the most fa-
vorable value in our 2D Ising model example, the inte-
grated information never exceeded Φ ∼ n1/2 bits, which
is merely a fraction n−1/2 of the n bits of information
that n spins can potentially store. So can we do better?
Fortunately, a closely related question has been carefully
studied in the branch of mathematics known as coding
theory, with the aim of optimizing error correcting codes.
Consider, for example, the following set of m = 16 bit

strings, each written as a column vector of length n = 8:

M =



0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1


This is known as the Hamming(8,4)-code, and has Ham-
ming distance d = 4, which means that at least 4 bit
flips are required to change one string into another [11].
It is easy to see that for a code with Hamming distance
d, any (d− 1) bits can always be reconstructed from the
others: You can always reconstruct b bits as long as eras-
ing them does not make two bit strings identical, which
would cause ambiguity about which the correct bit string
is. This implies that reconstruction works when the Ham-
ming distance d > b.

To translate such codes of m bit strings of length n
into physical systems, we simply created a state space
with n bits (interpretable as n spins or other two-state
systems) and construct a Hamiltonian which has an m-
fold degenerate ground state, with one minimum cor-
responding to each of the m bit strings in the code.
In the low-temperature limit, all bit strings will re-
ceive the same probability weight 1/m, giving an entropy
S = log2m. The corresponding integrated information
Φ of the ground state is plotted in Figure 3 for a few
examples, as a function of cut size k (the number of bits
assigned to the first subsystem). To calculate Φ for a cut
size k in practice, we simply minimize the mutual infor-
mation I over all

(
n
k

)
ways of partitioning the n bits into

k and (n− k) bits.
We see that, as advertised, the Hamming(8,4)-code

gives gives Φ = 3 when 3 bits are cut off. However,
it gives only Φ = 2 for bipartitions; the Φ-value for bi-
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Bits cut off
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s
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2
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8

128 ra
ndom 14-bit w

ords

64 12-bit w
ords

32 10-bit w
ords

16 8-bit words

8 6-bit words

4 4-bit words

FIG. 4: Same as for previous figure, but for random codes
with progressively longer bit strings, consisting of a random
subset containing

√
2n of the 2n possible bit strings. For

better legibility, the vertical axis has been re-centered for the
shorter codes.

partitions is not simply related to the Hamming distance,
and is not a quantity that most popular bit string codes
are optimized for. Indeed, Figure 3 shows that for bipar-
titions, it underperforms a code consisting of 16 random
unique bit strings of the same length. A rich and diverse
set of codes have been published in the literature, and
the state-of-the-art in terms of maximal Hamming dis-
tance for a given n is continually updated [12]. Although
codes with arbitrarily large Hamming distance d exist,
there is (just as for our Hamming(8,4)-example above)
no guarantee that Φ will be as large as d − 1 when the
smaller of the two subsystems contains more than d bits.
Moreover, although Reed-Solomon codes are sometimes
billed as classically optimal erasure codes (maximizing
d for a given n), their fundamental units are generally
not bits but groups of bits (generally numbers modulo
some prime number), and the optimality is violated if we
make cuts that do not respect the boundaries of these bit
groups.

Although further research on codes maximizing Φ
would be of interest, it is worth noting that simple ran-
dom codes appear to give Φ-values within a couple of bits
of the theoretical maximum in the limit of large n, as il-
lustrated in Figure 4. When cutting off k out of n bits,
the mutual information in classical physics clearly can-
not exceed the number of bits in either subsystem, i.e., k
and n− k, so the Φ-curve for a code must lie within the
shaded triangle in the figure. (The quantum-mechanical
case is more complicated, and we well see in the next sec-
tion that it in a sense integrates both better and worse.)
The codes for which the integrated information is plotted
simply consist of a random subset containing 2n/2 of the
2n possible bit strings, so roughly speaking, half the bits
encode fresh information and the other half provide the
redundancy giving near-perfect integration.

Just as we saw for the Ising model example, these ran-
dom codes show a tradeoff between entropy and redun-
dancy, as illustrated in Figure 5. When there are n bits,
how many of the 2n possible bit strings should we use

2-logarithm of number of patterns used

In
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 in
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at
io

n 
(b

its
)

2 4 6 8 10 12 14

1

2

3

4

5

6

7

FIG. 5: The integrated information is shown for random
codes using progressively larger random subsets of the 214

possible strings of 14 bits. The optimal choice is seen to be
using about 27 bit strings, i.e., using about half the bits to
encode information and the other half to integrate it.

to maximize the integrated information Φ? If we use m
of them, we clearly have Φ ≤ log2m, since in classical
physics, Φ cannot exceed the entropy if the system (the
mutual information is I = S1 + S2 − S, where S1 ≤ S
and S2 ≤ S so I ≤ S). Using very few bit strings is
therefore a bad idea. On the other hand, if we use all
2n of them, we lose all redundancy, the bits become in-
dependent, and Φ = 0, so being greedy and using too
many bit strings in an attempt to store more informa-
tion is also a bad idea. Figure 5 shows that the optimal
tradeoff is to use

√
2n of the codewords, i.e., to use half

the bits to encode information and the other half to in-
tegrate it. Taken together, the last two figures therefore
suggest that n physical bits can be used to provide about
n/2 bits of integrated information in the large-n limit.

E. Integration in physical systems

Let us explore the consequences of these results for
physical systems described by a Hamiltonian H and a
state ρ. As emphasized by Hopfield [13], any physical
system with multiple attractors can be viewed as an in-
formation storage device, since its state permanently en-
codes information about which attractor it belongs to.
Figure 6 shows two examples of H interpretable as po-
tential energy functions for a a single particle in two di-
mensions. They can both be used as information storage
devices, by placing the particle in a potential well and
keeping the system cool enough that the particle stays
in the same well indefinitely. The egg crate potential
V (x, y) = sin2(πx) sin2(πy) (top) has 256 minima and
hence a ground state entropy (information storage ca-
pacity) S = 8 bits, whereas the lower potential has only
16 minima and S = 4 bits.

The basins of attraction in the top panel are seen to
be the squares shown in the bottom panel. If we write
the x− and y− coordinates as binary numbers with b
bits each, then the first 4 bits of x and y encode which
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FIG. 6: A particle in the egg-crate potential energy land-
scape (top panel) stably encodes 8 bits of information that
are completely independent of one another and therefore not
integrated. In contrast, a particle in a Hamming(8,4) poten-
tial (bottom panel) encodes only 4 bits of information, but
with excellent integration. Qualitatively, a hard drive is more
like the top panel, while a neural network is more like the
bottom panel.

square (x, y) is in. The information in the remaining
bits encodes the location within this square; these bits
are not useful for information storage because they can
vary over time, as the particle oscillates around a mini-
mum. If the system is actively cooled, these oscillations
are gradually damped out and the particle settles toward
the attractor solution at the minimum, at the center of its
basin. This example illustrates that cooling is a physical
example of error correction: if thermal noise adds small
perturbations to the particle position, altering the least
significant bits, then cooling will remove these perturba-
tions and push the particle back towards the minimum
it came from. As long as cooling keeps the perturbations
small enough that the particle never rolls out of its basin
of attraction, all the 8 bits of information encoding its
basin number are perfectly preserved. Instead of inter-
preting our n = 8 data bits as positions in two dimen-
sions, we can interpret them as positions in n dimensions,
where each possible state corresponds to a corner of the
n-dimensional hypercube. This captures the essence of
many computer memory devices, where each bit is stored
in a system with two degenerate minima; the least sig-
nificant and redundant bits that can be error-corrected
via cooling now get equally distributed among all the di-
mensions.

How integrated is the information S? For the top panel
of Figure 6, not at all: H can be factored as a tensor
product of 8 two-state systems, so Φ = 0, just as for
typical computer memory. In other words, if the particle
is in a particular egg crate basin, knowing any one of the

bits specifying the basin position tells us nothing about
the other bits. The potential in the lower panel, on the
other hand, gives good integration. This potential retains
only 16 of the 256 minima, corresponding to the 16 bit
strings of the Hamming(8,4)-code, which as we saw gives
Φ = 3 for any 3 bits cut off and Φ = 2 bits for symmetric
bipartitions. Since the Hamming distance d = 4 for this
code, at least 4 bits must be flipped to reach another
minimum, which among other things implies that no two
basins can share a row or column.

F. The pros and cons of integration

Natural selection suggests that self-reproducing
information-processing systems will evolve integration if
it is useful to them, regardless of whether they are con-
scious or not. Error correction can obviously be use-
ful, both to correct errors caused by thermal noise and
to provide redundancy that improves robustness toward
failure of individual physical components such as neu-
rons. Indeed, such utility explains the preponderance
of error correction built into human-developed devices,
from RAID-storage to bar codes to forward error cor-
rection in telecommunications. If Tononi is correct and
consciousness requires integration, then this raises an in-
teresting possibility: our human consciousness may have
evolved as an accidental by-product of error correction.
There is also empirical evidence that integration is useful
for problem-solving: artificial life simulations of vehicles
that have to traverse mazes and whose brains evolve by
natural selection show that the more adapted they are to
their environment, the higher the integrated information
of the main complex in their brain [14].

However, integration comes at a cost, and as we will
now see, near maximal integration appears to be pro-
hibitively expensive. Let us distinguish between the max-
imum amount of information that can be stored in a state
defined by ρ and the maximum amount of information
that can be stored in a physical system defined by H. The
former is simply S(ρ) for the perfectly mixed (T = ∞)
state, i.e., log2 of the number of possible states (the num-
ber of bits characterizing the system). The latter can
be much larger, corresponding to log2 of the number of
Hamiltonians that you could distinguish between given
your time and energy available for experimentation. Let
us consider potential energy functions whose k different
minima can be encoded as bit strings (as in Figure 6),
and let us limit our experimentation to finding all the
minima. Then H encodes not a single string of n bits,
but a subset consisting of k out of all 2n such strings, one

for each minimum. There are
(

2n

k

)
such subsets, so the

information contained in H is
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S(H) = log2

(
2n

k

)
= log2

2n!

k!(2n − k)!
≈

≈ log2

(2n)k

kk
= k(n− log2 k) (7)

for k � 2n, where we used Stirling’s approximation
k! ≈ kk. So crudely speaking, H encodes not n bits
but kn bits. For the near-maximal integration given
by the random codes from the previous section, we had
k = 2n/2, which gives S(H) ∼ 2n/2 n

2 bits. For example,

if the n ∼ 1011 neurons in your brain were maximally
integrated in this way, then your neural network would
require a dizzying 1010000000000 bits to describe, vastly
more information than can be encoded by all the 1089

particles in our universe combined.
The neuronal mechanisms of human memory are still

unclear despite intensive experimental and theoretical ex-
plorations [15], but there is significant evidence that the
brain uses attractor dynamics in its integration and mem-
ory functions, where discrete attractors may be used to
represent discrete items [16]. The classic implementa-
tion of such dynamics as a simple symmetric and asyn-
chronous Hopfield neural network [13] can be conve-
niently interpreted in terms of potential energy func-
tions: the equations of the continuous Hopfield network
are identical to a set of mean-field equations that mini-
mize a potential energy function, so this network always
converges to a basin of attraction [17]. Such a Hopfield
network gives a dramatically lower information content
S(H) of only about 0.25 bits for per synapse[17], and
we have only about 1014 synapses, suggesting that our
brains can store only on the order of a few Terabytes of
information.

The integrated information of a Hopfield network is
even lower. For a Hopfield network of n neurons, the
total number of attractors is bounded by 0.14n [17],
so the maximum information capacity is merely S ≈
log2 0.14n ≈ log2 n ≈ 37 bits for n = 1011 neurons. Even
in the most favorable case where these bits are maxi-
mally integrated, our 1011 neurons thus provide a measly
Φ ≈ 37 bits of integrated information, as opposed to
about Φ ≈ 5× 1010 bits for a random coding.

G. The integration paradox

This leaves us with an integration paradox: why does
the information content of our conscious experience ap-
pear to be vastly larger than 37 bits? If Tononi’s informa-
tion and integration principles from Section I are correct,
the integration paradox forces us to draw at least one of
the following three conclusions:

1. Our brains use some more clever scheme for encod-
ing our conscious bits of information, which allows
dramatically larger Φ than Hopfield networks.

2. These conscious bits are much fewer than we might
naively have thought from introspection, implying
that we are only able to pay attention to a very
modest amount of information at any instant.

3. To be relevant for consciousness, the definition of
integrated information that we have used must be
modified or supplemented by at least one additional
principle.

We will see that the quantum results in the next section
bolster the case for conclusion 3.

The fundamental reason why a Hopfield network is
specified by much less information than a near-maximally
integrated network is that it involves only pairwise cou-
plings between neurons, thus requiring only ∼ n2 cou-
pling parameters to be specified — as opposed to 2n pa-
rameters giving the energy for each of the 2n possible
states. It is striking how H is similarly simple for the
standard model of particle physics, with the energy in-
volving only sums of pairwise interactions between parti-
cles supplemented with occasional 3-way and 4-way cou-
plings. H for the brain and H for fundamental physics
thus both appear to belong to an extremely simple sub-
class of all Hamiltonians, that require an unusually small
amount of information to describe. Just as a system im-
plementing near-maximal integration via random coding
is too complicated to fit inside the brain, it is also too
complicated to work in fundamental physics: Since the
information storage capacity S of a physical system is
approximately bounded by its number of particles [7] or
by its area in Planck units by the Holographic principle
[8], it cannot be integrated by physical dynamics that it-
self requires storage of the exponentially larger informa-
tion quantity S(H) ∼ 2S/2 S

2 unless the Standard Model
Hamiltonian is replaced by something dramatically more
complicated.

An interesting theoretical direction for further research
(pursuing resolution 1 to the integration paradox) is
therefore to investigate what maximum amount of in-
tegrated information Φ can be feasibly stored in a physi-
cal system using codes that are algorithmic (such as RS-
codes) rather than random. An interesting experimental
direction would be to search for concrete implementa-
tions of error-correction algorithms in the brain.

In summary, we have explored the integration prin-
ciple by quantifying integrated information in physical
systems. We have found that although excellent integra-
tion is possible in principle, it is more difficult in prac-
tice. In theory, random codes provide nearly maximal
integration, with about half of all n bits coding for data
and the other half providing Ψ ≈ n bits of integration),
but in practice, the dynamics required for implement-
ing them is too complex for our brain or our universe.
Most of our exploration has focused on classical physics,
where cuts into subsystems have corresponded to parti-
tions of classical bits. As we will see in the next section,
finding systems encoding large amounts of integrated in-
formation is even more challenging when we turn to the
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FIG. 7: Mutual information versus entropy for various 2-bit
systems. The different dots, squares and stars correspond
to different states, which in the classical cases are defined
by the probabilities for the four basis states 00, 01 10 and
11. Classical states can lie only in the pyramid below the
upper black star with (S, I) = (1, 1), whereas entanglement
allows quantum states to extend all the way up to the upper
black square at (0, 2). However, the integrated information Φ
for a quantum state cannot lie above the shaded green/grey
region, into which any other quantum state can be brought
by a unitary transformation. Along the upper boundary of
this region, either three of the four probabilities are equal, or
to two of them are equal while one vanishes.

quantum-mechanical case.

III. INDEPENDENCE

A. Classical versus quantum independence

How cruel is what Tononi calls “the cruelest cut”, di-
viding a system into two parts that are maximally in-
dependent? The situation is quite different in classical
physics and quantum physics, as Figure 7 illustrates for
a simple 2-bit system. In classical physics, the state is
specified by a 2×2 matrix giving the probabilities for the
four states 00, 01, 10 and 11, which define an entropy S
and mutual information I. Since there is only one pos-
sible cut, the integrated information Φ = I. The point
defined by the pair (S,Φ) can lie anywhere in the “pyra-
mid” in the figure, who’s top at (S,Φ) = (1, 1) (black
star) gives maximum integration, and corresponds to per-
fect correlation between the two bits: 50% probability for
00 and 11. Perfect anti-correlation gives the same point.
The other two vertices of the classically allowed region

are seen to be (S,Φ) = (0, 0) (100% probability for a sin-
gle outcome) and (S,Φ) = (2, 0) (equal probability for all
four outcomes).

In quantum mechanics, where the 2-qubit state is de-
fined by a 4× 4 density matrix, the available area in the
(S, I)-plane doubles to include the entire shaded trian-
gle, with the classically unattainable region opened up
because of entanglement. The extreme case is a Bell pair
state such as

|ψ〉 =
1√
2

(|↑〉|↑〉+ |↓〉|↓〉) , (8)

which gives (S, I) = (0, 2). However, whereas there was
only one possible cut for 2 classical bits, there are now in-
finitely many possible cuts because in quantum mechan-
ics, all Hilbert space bases are equally valid, and we can
choose to perform the factorization in any of them. Since
Φ is defined as I after the cruelest cut, it is the I-value
minimized over all possible factorizations. For simplicity,
we use the notation where ⊗ denotes factorization in the
coordinate basis, so the integrated information is

Φ = min
U

I(UρU†), (9)

i.e., the mutual information minimized over all possi-
ble unitary transformations U. Since the Bell pair of
equation (8) is a pure state ρ = |ψ〉〈ψ|, we can unitarily
transform it into a basis where the first basis vector is
|ψ〉, making it factorizable:

U


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

U† =

 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =

(
1 0
0 0

)
⊗
(

1 0
0 0

)
.

(10)
This means that Φ = 0, so in quantum mechanics, the
cruelest cut can be very cruel indeed: the most entangled
states possible in quantum mechanics have no integrated
information at all!

The same cruel fate awaits the most integrated 2-
bit state from classical physics: the perfectly correlated
mixed state ρ = 1

2 |↑〉〈↑| +
1
2 |↓〉〈↓|. It gave Φ = 1 bit

classically above (upper black star in the figure), but a
unitary transformation permuting its diagonal elements
makes it factorable:

U


1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

U† =


1
2 0 0 0
0 1

2 0 0
0 0 0 0
0 0 0 0

 =

(
1 0
0 0

)
⊗
(

1
2 0
0 1

2

)
,

(11)
so Φ = 0 quantum-mechanically (lower black star in the
figure).

B. Canonical transformations, independence and
relativity

The fundamental reason that these states are more sep-
arable quantum-mechanically is clearly that more cuts
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are available, making the cruelest one crueler. Interest-
ingly, the same thing can happen also in classical physics.
Consider, for example, our example of the deuterium
atom from equation (1). When we restricted our cuts to
simply separating different degrees of freedom, we found
that the group (rp,pp, rn,pn) was quite (but not com-
pletely) independent of the group (re,pe), and that there
was no cut splitting things into perfectly independent
pieces. In other words, the nucleus was fairly indepen-
dent of the electron, but none of the three particles was
completely independent of the other two. However, if we
allow our degrees of freedom to be transformed before
the cut, then things can be split into two perfectly in-
dependent parts! The classical equivalent of a unitary
transformation is of course a canonical transformation
(one that preserves phase-space volume). If we perform
the canonical transformation where the new coordinates
are the center-of-mass position rM and the relative dis-
placements r′p ≡ rp − rM and r′e ≡ re − rM , and cor-
respondingly define pM as the total momentum of the
whole system, etc., then we find that (rM ,pM ) is com-
pletely independent of the rest. In other words, the av-
erage motion of the entire deuterium atom is completely
decoupled from the internal motions around its center-
of-mass.

Thanks to relativity theory, this well-known decom-
position into average and relative motions is of course
possible for any isolated system. If two systems are com-
pletely independent, then they can gain no knowledge of
each other, so a conscious observer in one will be un-
aware of the other. Conversely, we can view relativity
as a special case of this idea: an observer in an isolated
system has no way of knowing whether she is at rest or
in uniform motion, because these are simply two differ-
ent allowed states for the center-of-mass system, which
is completely independent from the internal-motions sys-
tem of which her consciousness is a part.

C. How integrated can quantum states be?

We saw in Figure 7 that some seemingly inte-
grated states, such as a Bell pair or a pair of clas-
sically perfectly correlated bits, are in fact not inte-
grated at all. But the figure also shows that some
states are truly integrated even quantum-mechanically,
with I > 0 even for the cruelest cut. How inte-
grated can a quantum state be? The following theo-
rem, proved by Jevtic, Jennings & Rudolph [18], en-
ables the answer to be straightforwardly calculated2:

2 The converse of the ρDC is straightforward to prove: if Φ = 0
(which is equivalent to the state being factorizable; ρ = ρ1⊗ρ2),
then it is factorizable also in its eigenbasis where both ρ1 and ρ2
are diagonal.

ρ-Diagonality Theorem (ρDC):
The mutual information always takes its min-
imum in a basis where ρ is diagonal

The first step in computing the integrated information
Φ(ρ) is thus to diagonalize the n × n density matrix ρ.
If all n eigenvalues are different, then there are n! pos-
sible ways of doing this, corresponding to the n! ways
of permuting the eigenvalues, so the ρDC simplifies the
continuous minimization problem of equation (9) to a dis-
crete minimization problem over these n! permutations.
Suppose that n = l ×m, and that we wish to factor the
m-dimensional Hilbert space into factor spaces of dimen-
sionality l and m, so that Φ = 0. It is easy to see that this
is possible if the n eigenvalues of ρ can be arranged into
a l×m matrix that is multiplicatively separable (rank 1),
i.e., the product of a column vector and a row vector.
Extracting the eigenvalues for our example from equa-
tion (11) where l = m = 2 and n = 4, we see that(

1
2

1
2

0 0

)
is separable, but

(
1
2 0
0 1

2

)
is not,

and the only difference is that the order of the four num-
bers has been permuted. More generally, we see that to
find the “cruelest cut” that defines the integrated infor-
mation Φ, we want to find the permutation that makes
the matrix of eigenvalues as separable as possible. It is
easy to see that when seeking the permutation giving
maximum separability, we can without loss of generality
place the largest eigenvalue first (in the upper left corner)
and the smallest one last (in the lower right corner). If
there are only 4 eigenvalues (as in the above example),
the ordering of the remaining two has no effect on I.

D. The quantum integration paradox

We now have the tools in hand to answer the key ques-
tion from the last section: which state ρ maximizes the
integrated information Φ? Numerical search suggests
that the most integrated state is a rescaled projection
matrix satisfying ρ2 ∝ ρ. This means that some num-
ber k of the n eigenvalues equal 1/k and the remain-
ing ones vanish.3 For the n = 4 example from Fig-
ure 7, k = 3 is seen to give the best integration, with
eigenvalues (probabilities) 1/3, 1/3, 1/3 and 0, giving
Φ = log(27/16)/ log(8) ≈ 0.2516.

3 A heuristic way of understanding why having many equal eigen-
values is advantageous is that it helps eliminate the effect of the
eigenvalue permutations that we are minimizing over. If the op-
timal state has two distinct eigenvalues, then if swapping them
changes I, it must by definition increase I by some finite amount.
This suggests that we can increase the integration Φ by bringing
the eigenvalues infinitesimally closer or further apart, and repeat-
ing this procedure lets us further increase Φ until all eigenvalues
are either zero or equal to some positive value.
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For classical physics, we saw that the maximal at-
tainable Φ grows roughly linearly with n. Quantum-
mechanically, however, it decreases as n increases!4

In summary, no matter how large a quantum system
we create, its state can never contain more than about a
quarter of a bit of integrated information! This exacer-
bates the integration paradox from Section II G, eliminat-
ing both of the first two resolutions: you are clearly aware
of more than 0.25 bits of information right now, and this
quarter-bit maximum applies not merely to states of Hop-
field networks, but to any quantum states of any system.
Let us therefore begin exploring the third resolution: that
our definition of integrated information must be modified
or supplemented by at least one additional principle.

E. How integrated is the Hamiltonian?

An obvious way to begin this exploration is to con-
sider the state ρ not merely at a single fixed time t, but
as a function of time. After all, it is widely assumed that
consciousness is related to information processing, not
mere information storage. Indeed, Tononi’s original Φ-
definition [3] (which applies to classical neural networks
rather than general quantum systems) involves time, de-
pending on the extent to which current events affect fu-
ture ones.

Because the time-evolution of the state ρ is determined
by the Hamiltonian H via the Schrödinger equation

ρ̇ = i[H, ρ], (12)

whose solution is

ρ(t) = eiHtρe−iHt, (13)

we need to investigate the extent to which the cruelest
cut can decompose not merely ρ but the pair (ρ,H) into
independent parts. (Here and throughout, we often use
units where ~ = 1 for simplicity.)

F. Evolution with separable Hamiltonian

As we saw above, the key question for ρ is whether it
it is factorizable (expressible as product ρ = ρ1 ⊗ ρ2 of
matrices acting on the two subsystems), whereas the key

4 One finds that Φ is maximized when the k nonzero eigenvalues
are arranged in a Young Tableau, which corresponds to a parti-
tion of k as a sum of positive integers k1 + k2 + ..., giving Φ =
S(p)+S(p∗)−log2 k, where the probability vectors p and p∗ are
defined by pi = ki/k and p∗i = k∗i /k. Here k∗i denotes the conju-
gate partition. For example, if we cut an even number of qubits
into two parts with n/2 qubits each, then n = 2, 4, 6, ..., 20 gives
Φ ≈ 0.252, 0.171, 0.128, 0.085, 0.085, 0.073, 0.056, 0.056, 0.051
and 0.042 bits, respectively. This is if the diagonality conjec-
ture is true — if it is not, then Φ is even smaller.

question for H is whether it is what we will call addi-
tively separable, being a sum of matrices acting on the
two subsystems, i.e., expressible in the form

H = H1 ⊗ I + I⊗H2 (14)

for some matrices H1 and H2. For brevity, we will often
write simply separable instead of additively separable. As
mentioned in Section II B, a separable Hamiltonian H
implies that both the thermal state ρ ∝ e−H/kT and
the time-evolution operator U ≡ eiHt/~ are factorizable.
An important property of density matrices which was
pointed out already by von Neumann when he invented
them [19] is that if H is separable, then

ρ̇1 = i[H1, ρ1], (15)

i.e., the time-evolution of the state of the first subsystem,
ρ1 ≡ tr 2ρ, is independent of the other subsystem and of
any entanglement with it that may exist. This is easy to
prove: Using the identities (A16) and (A18) shows that

tr
2

[H1 ⊗ I, ρ] = tr
2

[(H1 ⊗ I)ρ]− tr
2

[ρ(H1 ⊗ I)]

= H1 tr
2

[(I⊗ I)ρ] + tr
2

[ρ(I⊗ I)]H1

= H1ρ1 − ρ1H2 = [H1, ρ1]. (16)

Using the identity (A10) shows that

tr
2

[I⊗H2, ρ] = 0. (17)

Summing equations (16) and (17) completes the proof.

G. The cruelest cut as the maximization of
separability

Since a general Hamiltonian H cannot be written in
the separable form of equation (14), it will also include a
third term H3 that is non-separable. The independence
principle from Section I therefore suggests an interest-
ing mathematical approach to the physics-from-scratch
problem of analyzing the total Hamiltonian H for our
physical world:

1. Find the Hilbert space factorization giving the
“cruelest cut”, decomposing H into parts with the
smallest interaction Hamiltonian H3 possible.

2. Keep repeating this subdivision procedure for each
part until only relatively integrated parts remain
that cannot be further decomposed with a small
interaction Hamiltonian.

The hope would be that applying this procedure to the
Hamiltonian of our standard model would reproduce the
full observed object hierarchy from Figure 1, with the fac-
torization corresponding to the objects, and the various
non-separable terms H3 describing the interactions be-
tween these objects. Any decomposition with H3 = 0
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would correspond to two parallel universes unable to
communicate with one another.

We will now formulate this as a rigorous mathemat-
ics problem, solve it, and derive the observational conse-
quences. We will find that this approach fails catastroph-
ically when confronted with observation, giving interest-
ing hints regarding further physical principles needed for
understanding why we perceive our world as an object
hierarchy.

H. The Hilbert-Schmidt vector space

To enable a rigorous formulation of our problem, let
us first briefly review the Hilbert-Schmidt vector space, a
convenient inner-product space where the vectors are not
wave functions |ψ〉 but matrices such as H and ρ. For
any two matrices A and B, the Hilbert-Schmidt inner
product is defined by

(A,B) ≡ tr A†B. (18)

For example, the trace operator can be written as an
inner product with the identity matrix:

tr A = (I,A). (19)

This inner product defines the Hilbert-Schmidt norm
(also known as the Frobenius norm)

||A|| ≡ (A,A)
1
2 = (tr A†A)

1
2 =

∑
ij

|Aij |2
 1

2

. (20)

If A is Hermitian (A† = A), then ||A||2 is simply the
sum of the squares of its eigenvalues.

Real symmetric and antisymmetric matrices form or-
thogonal subspaces under the Hilbert-Schmidt inner
product, since (S,A) = 0 for any symmetric matrix S
(satisfying St = S) and any antisymmetric matrix A
(satisfying At = −A). Because a Hermitian matrix (sat-
isfying H† = H) can be written in terms of real sym-
metric and antisymmetric matrices as H = S + iA, we
have

(H1,H2) = (S1,S2) + (A1,A2),

which means that the inner product of two Hermitian
matrices is purely real.

I. Separating H with orthogonal projectors

By viewing H as a vector in the Hilbert-Schmidt vec-
tor space, we can rigorously define and decomposition of
it into orthogonal components, two of which are the sep-
arable terms from equation (14). Given a factorization of

the Hilbert space where the matrix H operates, we define
four linear superoperators5 Πi as follows:

Π0H ≡ 1

n
(tr H) I (21)

Π1H ≡
(

1

n2
tr
2

H

)
⊗ I2 −Π0H (22)

Π2H ≡ I1 ⊗
(

1

n1
tr
1

H

)
−Π0H (23)

Π3H ≡ (I−Π1 −Π2 −Π3)H (24)

It is straightforward to show that these four linear op-
erators Πi form a complete set of orthogonal projectors,
i.e., that

3∑
i=0

Πi = I, (25)

ΠiΠj = Πiδij , (26)

(ΠiH,ΠjH) = ||ΠiH||2δij . (27)

This means that any Hermitian matrix H can be de-
composed as a sum of four orthogonal components Hi ≡
ΠiH, so that its squared Hilbert-Schmidt norm can be
decomposed as a sum of contributions from the four com-
ponents:

H = H0 + H1 + H2 + H3, (28)

Hi ≡ ΠiH, (29)

(Hi,Hj) = ||Hi||2δij , (30)

||H||2 = ||H0||2+||H1||2+||H2||2+||H3||2. (31)

We see that H0 ∝ I picks out the trace of H, whereas the
other three matrices are trace-free. This trace term is of
course physically uninteresting, since it can be eliminated
by simply adding an unobservable constant zero-point en-
ergy to the Hamiltonian. H1 and H2 corresponds to the
two separable terms in equation (14) (without the trace
term, which could have been arbitrarily assigned to ei-
ther), and H3 corresponds to the non-separable residual.
A Hermitian matrix H is therefore separable if and only if
Π3H = 0. Just as it is customary to write the norm or a
vector r by r ≡ |r| (without bold face), we will denote the
Hilbert-Schmidt norm of a matrix H by H ≡ ||H||. For
example, with this notation we can rewrite equation (31)
as simply H2 = H2

0 +H2
1 +H2

2 +H2
3 .

Geometrically, we can think of n×n Hermitian matri-
ces H as points in the N -dimensional vector space RN ,
whereN = n×n (Hermiteal matrices have n real numbers
on the diagonal and n(n− 1)/2 complex numbers off the
diagonal, constituting a total of n+ 2× n(n− 1)/2 = n2

5 Operators on the Hilbert-Schmidt space are usually called su-
peroperators in the literature, to avoid confusions with operators
on the underlying Hilbert space, which are mere vectors in the
Hilbert-Schmidt space.
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real parameters). Diagonal matrices form a hyperplane
of dimension n in this space. The projection operators
Π0, Π1, Π2 and Π3 project onto hyperplanes of dimen-
sion 1, (n − 1), (n − 1) and (n − 1)2, respectively, so
separable matrices form a hyperplane in this space of di-
mension 2n− 1. For example, a general 4× 4 Hermitian
matrix can be parametrized by 10 numbers (4 real for the
diagonal part and 6 complex for the off-diagonal part),
and its decomposition from equation (28) can be written
as follows:

H =

 t+a+b+v d+w c+x y
d∗+w∗ t+a−b−v z c−x
c∗+x∗ z∗ t−a+b−v d−w
y∗ c∗−x∗ d∗−w∗ t−a−b+v

 =

=

t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

+

 a 0 c 0
0 a 0 c
c∗ 0 −a 0
0 c∗ 0 −a

+

 b d 0 0
d∗ −b 0 0
0 0 b d
0 0 d∗ −b

+

+

 v w x y
w∗ −v z −x
x∗ z∗ −v −w
y∗ −x∗ −w∗ v

 (32)

We see that t contributes to the trace (and H0) while
the other three components Hi are traceless. We also see
that tr 1H2 = tr 2H1 = 0, and that both partial traces
vanish for H3.

J. Maximizing separability

We now have all the tools we need to rigorously max-
imize separability and test the physics-from-scratch ap-
proach described in Section III G. Given a Hamiltonian
H, we simply wish to minimize the norm of its non-
separable component H3 over all possible Hilbert space
factorizations, i.e., over all possible unitary transforma-
tions. In other words, we wish to compute

E̊ ≡ min
U
||Π3H||, (33)

where we have defined the integration energy E̊ by anal-
ogy with the integrated information Φ. If E̊ = 0, then
there is a basis where our system separates into two paral-
lel universes, otherwise E̊ quantifies the coupling between
the two parts of the system under the cruelest cut.

The Hilbert-Schmidt space allows us to interpret the
minimization problem of equation (33) geometrically, as
illustrated in Figure 8. Let H∗ denote the Hamiltonian
in some given basis, and consider its orbit H = UHU†

under all unitary transformations U. This is a curved hy-
persurface whose dimensionality is generically n(n − 1),
i.e., n lower than that of the full space of Hermitian ma-
trices, since unitary transformation leave all n eigenval-

ues invariant.6 We will refer to this curved hypersur-
face as a subsphere, because it is a subset of the full n2-
dimensional sphere: the radius H (the Hilbert-Schmidt
norm ||H||) is invariant under unitary transformations,
but the subsphere may have a more complicated topology
than a hypersphere; for example, the 3-sphere is known
to topologically be the double cover of SO(3), the matrix
group of 3× 3 orthonormal transformations.

We are interested in finding the most separable point H
on this subsphere, i.e., the point on the subsphere that is
closest to the (2n−1)-dimensional separable hyperplane.
In our notation, this means that we want to find the point
H on the subsphere that minimizes ||Π3H||, the Hilbert-
Schmidt norm of the non-separable component. If we
perform infinitesimal displacements along the subsphere,
||Π3H|| thus remains constant to first order (the gradient
vanishes at the minimum), so all tangent vectors of the
subsphere are orthogonal to Π3H, the vector from the
separable hyperplane to the subsphere.

Unitary transformations are generated by anti-
Hermitian matrices, so the most general tangent vector
δH is of the form

δH = [A,H] ≡ AH−HA (34)

for some anti-Hermitian n×n matrix A (any matrix sat-
isfying A† = −A). We thus obtain the following simple
condition for maximal separability:

(Π3H, [A,H]) = 0 (35)

for any anti-Hermitian matrix A. Because the most gen-
eral anti-Hermitian matrix can be written as A = iB for
a Hermitian matrix B, equation (35) is equivalent to the
condition (Π3H, [B,H]) = 0 for all Hermitian matrices
B. Since there are n2 anti-Hermitian matrices, equa-
tion (35) is a system of n2 coupled quadratic equations
that the components of H must obey.

K. The Hamiltonian diagonality theorem

Analogously to the above-mentioned ρ-diagonality the-
orem, we will now prove that maximal separability is at-
tained in the eigenbasis.

H-Diagonality Theorem (HDT):
The Hamiltonian is always maximally separa-
ble (minimizing ||H3||) in the energy eigenba-
sis where it is diagonal.

As a preliminary, let us first prove the following:

Lemma 1: For any Hermitian positive semidefinite
matrix H, there is a diagonal matrix H∗ giving the same

6 n×n-dimensional Unitary matrices U are known to form an n×n-
dimensional manifold: they can always be written as U = eiH

for some Hermitian matrix H, so they are parametrized by the
same number of real parameters (n× n) as Hermitian matrices.
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FIG. 8: Geometrically, we can view the integration energy
as the shortest distance (in Hilbert-Schmidt norm) between
the hyperplane of separable Hamiltonians and a subsphere
of Hamiltonians that can be unitarily transformed into one
another. The most separable Hamiltonian H on the subsphere
is such that its non-separable component Π3 is orthogonal
to all subsphere tangent vectors [A,H] generated by anti-
Hermitian matrices A.

subsystem eigenvalue spectra, λ(Π1H∗) = λ(Π1H),
λ(Π2H∗) = λ(Π2H), and whose eigenvalue spectrum is
majorized by that of H, i.e., λ(H) � λ(H∗).

Proof: Define the matrix H′ ≡ UHU†, where U ≡
U1⊗U2, and U1 and U2 are unitary matrices diagonal-
izing the partial trace matrices tr 2H and tr 1H, respec-
tively. This implies that tr 1H

′ and tr 2H
′ are diagonal,

and λ(H′) = λ(H). Now define the matrix H∗ to be H′

with all off-diagonal elements set to zero. Then tr 1H∗ =
tr 1H

′ and tr 2H∗ = tr 2H
′, so λ(Π1H∗) = λ(Π1H) and

λ(Π2H∗) = λ(Π2H). Moreover, since the eigenvalues of
any Hermitian positive semidefinite matrix majorize its
diagonal elements [20], λ(H∗) ≺ λ(H′) = λ(H), which
completes the proof.

Lemma 2: The set S(H) of all diagonal matrices
whose diagonal elements are majorized by the vector
λ(H) is a convex subset of the subsphere, with boundary
points on the surface of the subsphere that are diagonal
matrices with all permutations of λ(H).

Proof: Any matrix H∗ ∈ S(H) must lie either on
the subsphere surface or in its interior, because of the
well-known result that for any two positive semidefinite
Hermitian matrices of equal trace, the majorization con-
dition λ(H∗) ≺ λ(H) is equivalent to the former lying
in the convex hull of the unitary orbit of the latter [21]:

H∗ =
∑
i piUiHU†i , pi ≥ 0,

∑
i pi = 1, UiU

†
i = I. S(H)

contains the above-mentioned boundary points, because
they can be written as UHU† for all unitary matrices

U that diagonalize H, and for a diagonal matrix, the
corresponding H∗ is simply the matrix itself. The set
S(H) is convex, because the convexity condition that
pλ1 + (1 − p)λ2 � λ if λ1 � λ, λ2 � λ, 0 ≤ p ≤ 1
follows straight from the definition of �.

Lemma 3: The function f(H) ≡ ||Π1H||2 + ||Π2H||2
is convex, i.e., satisfies f(paHa + pbHb) ≤ paf(Ha) +
pbf(Hb) for any constants satisfying pa ≥ 0, pb ≥ 0,
pa + pb = 1.

Proof: If we arrange the elements of H into a vec-
tor h and denote the action of the superoperators Πi

on h by matrices Pi, then f(H) = |P1h|2 + |P2h|2 =

h†(P†1P1 + P†2P2)h. Since the matrix in parenthesis is
symmetric and positive semidefinite, the function f is a
positive semidefinite quadratic form and hence convex.

We are now ready to prove the H-diagonality theorem.
This is equivalent to proving that f(H) takes its maxi-
mum value on the subsphere in Figure 8 for a diagonal H:
since both ||H|| and ||H0|| are unitarily invariant, mini-
mizing ||H3||2 = ||H||2 − ||H0||2 − f(H) is equivalent to
maximizing f(H).

Let O(H) denote the subphere, i.e., the unitary orbit
of H. By Lemma 1, for every H ∈ O(H), there is an H∗ ∈
S(H) such that f(H) = f(H∗). If f takes its maximum
over S(H) at a point H∗ which also belongs to O(H),
then this is therefore also the maximum of f over O(H).
Since the function f is convex (by Lemma 3) and the set
S(H) is convex (by Lemma 2), f cannot have any local
maxima within the set and must take its maximum value
at at least one point on the boundary of the set. As per
Lemma 2, these boundary points are diagonal matrices
with all permutations of the eigenvalues of H, so they
also belong to O(H) and therefore constitute maxima of
f over the subsphere. In other words, the Hamiltonian
is always maximally separable in its energy eigenbasis,
q.e.d.

This result holds also for Hamiltonians with negative
eigenvalues, since we can make all eigenvalues positive
by adding an H0-component without altering the opti-
mization problem. In addition to the diagonal optimum,
there will generally be other bases with identical values
of ||H3||, corresponding to separable unitary transforma-
tions of the diagonal optimum.

We have thus proved that separability is always max-
imized in the energy eigenbasis, where the n× n matrix
H is diagonal and the projection operators Πi defined
by equations (21)-(24) greatly simplify. If we arrange
the n = lm diagonal elements of H into an l×m matrix
H, then the action of the linear operators Πi is given by
simple matrix operations:

H0 ≡ QlHQm, (36)

H1 ≡ PlHQm, (37)

H2 ≡ QlHPm, (38)

H3 ≡ PlHPm, (39)



16

where

Pm ≡ I −Qm, (40)

(Qm)ij ≡
1

m
(41)

are m × m projection matrices satisfying P 2
m = Pm,

Q2
m = Qm, PmQm = QmPm = 0, Pm + Qm = I. (To

avoid confusion, we are using boldface for n × n matri-
ces and plain font for smaller matrices involving only the
eigenvalues.)

L. Ultimate independence and the Quantum Zeno
paradox

FIG. 9: If the Hamiltonian of a system commutes with the
interaction Hamiltonian ([H1,H3] = 0), then decoherence
drives the system toward a time-independent state ρ where
nothing ever changes. The figure illustrates this for the Bloch
Sphere of a single qubit starting in a pure state and ending up
in a fully mixed state ρ = I/2. More general initial states end
up somewhere along the z-axis. Here H1 ∝ σz, generating a
simple precession around the z-axis.

In Section III G, we began exploring the idea that if we
divide the world into maximally independent parts (with
minimal interaction Hamiltonians), then the observed ob-
ject hierarchy from Figure 1 would emerge. The HDT
tells us that this decomposition (factorization) into max-
imally independent parts can be performed in the energy
eigenbasis of the total Hamiltonian. This means that all
subsystem Hamiltonians and all interaction Hamiltonians
commute with one another, corresponding to an essen-
tially classical world where none of the quantum effects
associated with non-commutativity manifest themselves!
In contrast, many systems that we customarily refer to

as objects in our classical world do not commute with
their interaction Hamiltonians: for example, the Hamil-
tonian governing the dynamics of a baseball involves its
momentum, which does not commute with the position-
dependent potential energy due to external forces.

As emphasized by Zurek [22], states commuting with
the interaction Hamiltonian form a “pointer basis” of
classically observable states, playing an important role
in understanding the emergence of a classical world.
The fact that the independence principle automatically
leads to commutativity with interaction Hamiltonians
might therefore be taken as an encouraging indication
that we are on the right track. However, whereas
the pointer states in Zurek’s examples evolve over time
due to the system’s own Hamiltonian H1, those in our
independence-maximizing decomposition do not, because
they commute also with H1. Indeed, the situation
is even worse, as illustrated in Figure 9: any time-
dependent system will evolve into a time-independent
one, as environment-induced decoherence [23–26, 28, 30]
drives it towards an eigenstate of the interaction Hamil-
tonian, i.e., an energy eigenstate.7

The famous Quantum Zeno effect, whereby a system
can cease to evolve in the limit where it is arbitrar-
ily strongly coupled to its environment [31], thus has a
stronger and more pernicious cousin, which we will term
the Quantum Zeno Paradox or the Independence Para-
dox.

Quantum Zeno Paradox:
If we decompose our universe into maximally
independent objects, then all change grinds to
a halt.

In summary, we have tried to understand the emer-
gence of our observed semiclassical world, with its hi-
erarchy of moving objects, by decomposing the world
into maximally independent parts, but our attempts have
failed dismally, producing merely a timeless world remi-
niscent of heat death. In Section II G, we saw that using
the integration principle alone led to a similarly embar-
rassing failure, with no more than a quarter of a bit of
integrated information possible. At least one more prin-
ciple is therefore needed.

IV. DYNAMICS AND AUTONOMY

Let us now explore the implications of the dynamics
principle from Table II, according to which a conscious
system has the capacity to not only store information,
but also to process it. As we just saw above, there is an

7 For a system with a finite environment, the entropy will eventu-
ally decrease again, causing the resumption of time-dependence,
but this Poincaré recurrence time grows exponentially with envi-
ronment size and is normally large enough that decoherence can
be approximated as permanent.
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interesting tension between this principle and the inde-
pendence principle, whose Quantum Zeno Paradox gives
the exact opposite: no dynamics and no information pro-
cessing at all.

We will term the synthesis of these two competing prin-
ciples the autonomy principle: a conscious system has
substantial dynamics and independence. When explor-
ing autonomous systems below, we can no longer study
the state ρ and the Hamiltonian H separately, since their
interplay is crucial. Indeed, we well see that there are in-
teresting classes of states ρ that provide substantial dy-
namics and near-perfect independence even when the in-
teraction Hamiltonian H3 is not small. In other words,
for certain preferred classes of states, the independence
principle no longer pushes us to simply minimize H3 and
face the Quantum Zeno Paradox.

A. Probability velocity and energy coherence

To obtain a quantitative measure of dynamics, let us
first define the probability velocity v ≡ ṗ, where the prob-
ability vector p is given by pi ≡ ρii. In other words,

vk = ρ̇kk = i[H, ρ]kk. (42)

Since v is basis-dependent, we are interested in finding
the basis where

v2 ≡
∑
k

v2k =
∑
k

(ρ̇kk)2 (43)

is maximized, i.e., the basis where the sums of squares of
the diagonal elements of ρ̇ is maximal. It is easy to see
that this basis is the eigenbasis of ρ̇:

v2 =
∑
k

(ρ̇kk)2 =
∑
jk

(ρ̇jk)2 −
∑
j 6=k

(ρ̇jk)2

= ||ρ̇||2 −
∑
j 6=k

(ρ̇jk)2 (44)

is clearly maximized in the eigenbasis where all off-
diagonal elements in the last term vanish, since the
Hilbert-Schmidt norm ||ρ̇|| is the same in every basis;
||ρ̇||2 = tr ρ̇2, which is simply the sum of the squares of
the eigenvalues of ρ̇.

Let us define the energy coherence

δH ≡ 1√
2
||ρ̇|| = 1√

2
||[H, ρ]|| =

√
−tr {[H, ρ]2}

2

=
√

tr [H2ρ2 −HρHρ]. (45)

For a pure state ρ = |ψ〉〈ψ|, this definition implies that
δH ≡ ∆H, where ∆H is the energy uncertainty

∆H =
[
〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2

]1/2
, (46)

so we can think of δH as the coherent part of the en-
ergy uncertainty, i.e., as the part that is due to quantum
rather than classical uncertainty.

Since ||ρ̇|| = ||[H, ρ]|| =
√

2δH, we see that the maxi-
mum possible probability velocity v is simply

vmax =
√

2 δH, (47)

so we can equivalently use either of v or δH as convenient
measures of quantum dynamics.8 Whimsically speaking,
the dynamics principle thus implies that energy eigen-
states are as unconscious as things come, and that if you
know your own energy exactly, you’re dead.

Although it is not obvious from their definitions, these
quantities vmax and δH are independent of time (even
though ρ generally evolves). This is easily seen in the
energy eigenbasis, where

− iρ̇mn = [H, ρ]mn = ρmn(Em − En), (49)

where the energies En are the eigenvalues of H. In this
basis, ρ(t) = eiHtρ(0)e−iHt simplifies to

ρ(t)mn = ρ(0)mne
i(Em−En)t, (50)

This means that in the energy eigenbasis, the probabili-
ties pn ≡ ρnn are invariant over time. These quantities
constitute the energy spectral density for the state:

pn = 〈En|ρ|En〉. (51)

In the energy eigenbasis, equation (46) reduces to

δH2 = ∆H2 =
∑
n

pnE
2
n −

(∑
n

pnEn

)2

, (52)

which is time-invariant because the spectral density pn
is. For general states, equation (45) simplifies to

δH2 =
∑
mn

|ρmn|2En(En − Em). (53)

This is time-independent because equation (50) shows
that ρmn changes merely by a phase factor, leaving |ρmn|
invariant. In other words, when a quantum state evolves
unitarily in the Hilbert-Schmidt vector space, both the
position vector ρ and the velocity vector ρ̇ retain their
lengths: both ||ρ|| and ||ρ̇|| remain invariant over time.

B. Dynamics versus complexity

Our results above show that if all we are interested in
is maximizing the maximal probability velocity, then we

8 The fidelity between the state ψ(t) and the initial state ψ0 is
defined as

F (t) ≡ 〈ψ0|ψ(t)〉, (48)

and it is easy to show that Ḟ (0) = 0 and F̈ (0) = −(∆H)2, so
the energy uncertainty is a good measure of dynamics in that it
also determines the fidelity evolution to lowest order, for pure
states. For a detailed review of related measures of dynam-
ics/information processing capacity, see [7].
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FIG. 10: Time-evolution of Bloch vector trσρ̇1 for a single qubit subsystem. We saw how minimizing H3 leads to a static state
with no dynamics, such as the left example. Maximizing δH, on the other hand, produces extremely simple dynamics such as
the right example. Reducing δH by a modest factor of order unity can allow complex and chaotic dynamics (center); shown
here is a 2-qubit system whether the second qubit is traced out.

should find the two most widely separated eigenvalues of
H, Emin and Emax, and choose a pure state that involves
a coherent superposition of the two:

|ψ〉 = c1|Emin〉+ c2|Emax〉, (54)

where |c1| = |c2| = 1/
√

2. This gives δH = (Emax −
Emin)/2, the largest possible value, but produces an ex-
tremely simple and boring solution ρ(t). Since the spec-
tral density pn = 0 except for these two energies, the
dynamics is effectively that of a 2-state system (a sin-
gle qubit) no matter how large the dimensionality of H
is, corresponding to a simple periodic solution with fre-
quency ω = Emax − Emin (a circular trajectory in the
Bloch sphere as in the right panel of Figure 10). This vi-
olates the dynamics principle as defined in Table II, since
no substantial information processing capacity exists: the
system is simply performing the trivial computation that
flips a single bit repeatedly.

To perform interesting computations, the system
clearly needs to exploit a significant part of its energy
spectrum. As can be seen from equation (50), if the
eigenvalue differences are irrational multiples of one an-
other, then the time evolution will never repeat, and ρ
will eventually evolve through all parts of Hilbert space
allowed by the invariants |〈Em|ρ|En〉|. The reduction of
δH required to transition from simple periodic motion
to such complex aperiodic motion is quite modest. For
example, if the eigenvalues are roughly equispaced, then
changing the spectral density pn from having all weight at
the two endpoints to having approximately equal weight

for all eigenvalues will only reduce the energy coherence
δH by about a factor

√
3, since the standard deviation

of a uniform distribution is
√

3 times smaller than its
half-width.

C. Highly autonomous systems: sliding along the
diagonal

What combinations of H, ρ and factorization produce
highly autonomous systems? A broad and interesting
class corresponds to macroscopic objects around us that
move classically to an excellent approximation.

The states that are most robust toward environment-
induced decoherence are those that approximately com-
mute with the interaction Hamiltonian [25]. As a simple
but important example, let us consider an interaction
Hamiltonian of the factorizable form

H3 = A⊗B, (55)

and work in a basis where the interaction term A is di-
agonal. If ρ1 is approximately diagonal in this basis,
then H3 has little effect on the dynamics, which be-
comes dominated by the internal subsystem Hamiltonian
H1. The Quantum Zeno Paradox we encountered in Sec-
tion III L involved a situation where H1 was also diag-
onal in this same basis, so that we ended up with no
dynamics. As we will illustrate with examples below,
classically moving objects in a sense constitute the op-
posite limit: the commutator ρ̇1 = i[H1, ρ1] is essentially
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FIG. 11: Schematic representation of the time-evolution of
the density matrix ρij for a highly autonomous subsystem.
ρij ≈ 0 except for a single region around the diagonal
(red/grey dot), and this region slides along the diagonal un-
der the influence of the subsystem Hamiltonian H1. Any ρij-
elements far from the diagonal rapidly approach zero because
of environment-decoherence caused by the interaction Hamil-
tonian H3.

as large as possible instead of as small as possible, con-
tinually evading decoherence by concentrating ρ around
a single point that continually slides along the diagonal,
as illustrated in Figure 11. Decohererence rapidly sup-
presses off-diagonal elements far from this diagonal, but
leaves the diagonal elements completely unaffected, so
there exists a low-decoherence band around the diagonal.
Suppose, for instance, that our subsystem is the center-
of-mass position x of a macroscopic object experiencing
a position-dependent potential V (x) caused by coupling
to the environment, so that Figure 11 represents the den-
sity matrix ρ1(x, x′) in the position basis. If the potential
V (x) has a flat (V ′ = 0) bottom of width L, then ρ1(x, x′)
will be completely unaffected by decoherence for the band
|x′−x| < L. For a generic smooth potential V , the deco-
herence suppression of off-diagonal elements grows only
quadratically with the distance |x′−x| from the diagonal
[24, 29], again making decoherence much slower than the
internal dynamics in a narrow diagonal band.

As a specific example of this highly autonomous type,
let us consider a subsystem with a uniformly spaced en-
ergy spectrum. Specifically, consider an n-dimensional
Hilbert space and a Hamiltonian with spectrum

Ek =

[
k − n− 1

2

]
~ω = k~ω + E0, (56)

k = 0, 1, ..., n − 1. We will often set ~ω = 1 for simplic-

ity. For example, n = 2 gives the spectrum {− 1
2 ,

1
2}

like the Pauli matrices divided by two, n = 5 gives
{−2,−1, 0, 1, 2} and n → ∞ gives the simple Harmonic
oscillator (since the zero-point energy is physically irrele-
vant, we have chosen it so that tr H =

∑
Ek = 0, whereas

the customary choice for the harmonic oscillator is such
that the ground state energy is E0 = ~ω/2).

If we want to, we can define the familiar position and
momentum operators x and p, and interpret this system
as a Harmonic oscillator. However, the probability ve-
locity v is not maximized in either the position or the
momentum basis, except twice per oscillation — when
the oscillator has only kinetic energy, v is maximized in
the x-basis, and when it has only potential energy, v is
maximized in the p-basis, and when it has only poten-
tial energy. If we consider the Wigner function W (x, p),
which simply rotates uniformly with frequency ω, it be-
comes clear that the observable which is always chang-
ing with the maximal probability velocity is instead the
phase, the Fourier-dual of the energy. Let us therefore
define the phase operator

Φ ≡ FHF†, (57)

where F is the unitary Fourier matrix.
Please remember that none of the systems H that we

consider have any a priori physical interpretation; rather,
the ultimate goal of the physics-from-scratch program is
to derive any interpretation from the mathematics alone.
Generally, any thus emergent interpretation of a subsys-
tem will depend on its interactions with other systems.
Since we have not yet introduced any interactions for our
subsystem, we are free to interpret it in whichever way is
convenient. In this spirit, an equivalent and sometimes
more convenient way to interpret our Hamiltonian from
equation (56) is as a massless one-dimensional scalar par-
ticle, for which the momentum equals the energy, so the
momentum operator is p = H. If we interpret the par-
ticle as existing in a discrete space with n points and a
toroidal topology (which we can think of as n equispaced
points on a ring), then the position operator is related to
the momentum operator by a discrete Fourier transform:

x = FpF†, Fjk ≡
1√
N
ei

jk
2πn . (58)

Comparing equations (57) and (58), we see that x =
Φ. Since F is unitary, the operators H, p, x and Φ
all have the same spectrum: the evenly spaced grid of
equation (56).

As illustrated in Figure 12, the time-evolution gener-
ated by H has a very simple geometric interpretation
in the space spanned by the position eigenstates |xk〉,
k = 1, ...n: the space is simply rotating with frequency ω
around a vector that is the sum of all the position eigen-
vectors, so after a time t = 2π/nω, a state |ψ(0)〉 = |xk〉
has been rotated such that it equals the next eigenvector:
|ψ(t)〉 = |xk+1〉, where the addition is modulo n. This
means that the system has period T ≡ 2π/ω, and that
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FIG. 12: For a system with an equispaced energy spectrum (such as a truncated harmonic oscillator or a massless particle in
a discrete 1-dimensional periodic space), the time-evolution has a simple geometric interpretation in the space spanned by the
eigenvectors x̂k of the phase operator FHF, the Fourier dual of the Hamiltonian, simply corresponding to rotating the entire
space with frequency ω around the vector sum of these basis vectors. Here ~ω is the energy level spacing. By plotting things in
a plane perpendicular to this basis vector sum, we can easily visualize also situations with n > 3 dimensions: the basis vectors
form a regular n-sided polygon, and time-evolution simply rotates this plane around the polygon center so that each basis
vector gets mapped into the subsequent one after a time 2π/nω. The black star denotes the α = 1 apodized state described in
the text, which is more robust toward decoherence.

|ψ〉 rotates through each of the n basis vectors during
each period.

Let us now quantify the autonomy of this system, start-
ing with the dynamics. Since a position eigenstate is a
Dirac delta function in position space, it is a plane wave
in momentum space — and in energy space, since H = p.
This means that the spectral density is pn = 1/n for a
position eigenstate. Substituting equation (56) into equa-
tion (52) gives an energy coherence

δH = ~ω
√
n2 − 1

12
. (59)

For comparison,

||H|| =

(
n−1∑
k=0

E2
k

)1/2

= ~ω
√
n(n2 − 1)

12
=
√
n δH. (60)

Let us now turn to quantifying independence and de-
coherence. The inner product between the unit vector
|ψ(0)〉 and the vector |ψ(t)〉 ≡ eiHt|ψ(0)〉 into which it
evolves after a time t is

fn(φ) ≡ 〈ψ|eiH
φ
ω |ψ〉 =

1

n

n−1∑
k=0

eiEkφ = e−i
n−1
2 φ

n−1∑
k=0

eikφ

=
1

n
e−i

n−1
2 φ 1− einφ

1− eiφ
=

sinnφ

n sinφ
, (61)

where φ ≡ ωt. This inner product fn is plotted in Fig-
ure 13, and is seen to be a sharply peaked even function
satisfying fn(0) = 1, fn(2πk/n) = 0 for k = 1, ..., n − 1
and exhibiting one small oscillation between each of these

zeros. The angle θ ≡ cos−1 fn(φ) between an initial vec-
tor φ and its time evolution thus grows rapidly from 0◦ to
90◦, then oscillates close to 90◦ until returning to 0◦ after
a full period T . An initial state |ψ(0)〉 = |xk〉 therefore
evolves as

ψj(t) = fn(ωt− 2π[j − k]/n)

in the position basis, i.e., a wavefunction ψj sharply
peaked for j ∼ k + nωt/2π (mod n). Since the density
matrix evolves as ρij(t) = ψi(t)ψj(t)

∗, it will therefore
be small except for i ∼ j ∼ k + nωt/2π (mod n), corre-
sponding to the round dot on the diagonal in Figure 11.
In particular, the decoherence-sensitive elements ρjk will
be small far from the diagonal, corresponding to the small
values that fn takes far from zero. How small will the
decoherence be? Let us now develop the tools needed to
quantify this.

D. The exponential growth of autonomy with
system size

Let us return to the most general Hamiltonian H
and study how an initially separable state ρ = ρ1 ⊗ ρ2
evolves over time. Using the orthogonal projectors of
Section III I, we can decompose H as

H = H1 ⊗ I + I⊗H2 + H3, (62)

where tr 1H3 = tr 2H3 = 0. By substituting equa-
tion (62) into the evolution equation ρ̇1 = tr 2ρ̇ =
itr 2[H, ρ] and using various partial trace identities from
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FIG. 13: The wiggliest (heavy black) curve shows the inner
product of a position eigenstate with what it evolves into a
time t = φ/ω later due to our n = 20-dimensional Hamilto-
nian with energy spacings ~ω. When optimizing to minimize
the square of this curve using the 1 − cosφ penalty func-
tion shown, corresponding to apodization in the Fourier do-
main, we instead obtain the green/light grey curve, resulting
in much less decoherence.

Section A to simplify the resulting three terms, we obtain

ρ̇1 = i tr
2

[H, ρ1 ⊗ ρ2] = i [H1 + H∗, ρ1], (63)

where what we will term the effective interaction Hamil-
tonian

H∗ ≡ tr
2
{(I⊗ ρ2)H3} (64)

can be interpreted as an average of the interaction Hamil-
tonian H3, weighted by the environment state ρ2. Equa-
tion (63) implies that the evolution of ρ1 remains unitary
to first order in time, the only effect of the interaction H3

being to replace H1 from equation (15) by an effective
Hamiltonian H1 + H∗.

The second time derivative is given by ρ̈1 = tr 2ρ̇ =
−tr 2[H, [H, ρ]], and by analogously substituting equa-
tion (62) and using partial trace identities from Section A
to simplify the resulting nine terms, we obtain

− ρ̈1 = tr 2[H, [H, ρ1 ⊗ ρ2]] =

= [H1, [H1, ρ1]]− i [K, ρ1] +

+ [H1, [H∗, ρ1]] + [H∗, [H1, ρ1]] +

+ tr 2[H3, [H3, ρ1 ⊗ ρ2]], (65)

where we have defined the Hermitian matrix

K ≡ i tr 2{(I⊗ [H2, ρ2])H3}. (66)

To qualify independence and autonomy, we are inter-
ested in the extent to which H3 causes entanglement and
makes the time-evolution of ρ1 non-unitary. When think-
ing of ρ as a vector in the Hilbert-Schmidt vector space
that we reviewed in Section III H, unitary evolution pre-
serves its length ||ρ||. To provide geometric intuition for

this, let us define dot and cross product notation analo-
gous to vector calculus. First note that

(A†, [A,B]) = tr AAB− tr ABA = 0, (67)

since a trace of a product is invariant under cyclic per-
mutations of the factors. This shows that a commuta-
tor [A,B] is orthogonal to both A† and B† under the
Hilbert-Schmidt inner product, and a Hermitian matrix
H is orthogonal to its commutator with any matrix.

This means that it we restrict ourselves to the Hilbert-
Schmidt vector space of Hermitian matrices, we obtain an
interesting generalization of the standard dot and cross
products for 3D vectors. Defining

A ·B ≡ (A,B), (68)

A×B ≡ i[A,B], (69)

we see that these operations satisfy all the same prop-
erties as their familiar 3D analogs: the scalar (dot)
product is symmetric (B · A = tr B†A = tr AB† =
A · B), while the vector (cross) product is antisym-
metric (A × B = B × A), orthogonal to both factors
([A×B] ·A = [A×B] ·B = 0), and produces a result of
the same type as the two factors (a Hermitian matrix).

In this notation, the products of an arbitrary Hermi-
tian matrix A with the identity matrix I are

I ·A = tr A, (70)

I×A = 0, (71)

and the Schrödinger equation ρ̇ = i[H, ρ] becomes simply

ρ̇ = H× ρ. (72)

Just as in the 3D vector analogy, we can think of this
as generating rotation of the vector ρ that preserves its
length:

d

dt
||ρ||2 =

d

dt
ρ · ρ = 2ρ̇ · ρ = 2(H× ρ) · ρ = 0. (73)

A simple and popular way of quantifying whether evo-
lution is non-unitary is to compute the linear entropy

Slin ≡ 1− tr ρ2 = 1− ||ρ||2, (74)

and repeatedly differentiating equation (74) tells us that

Ṡlin = −2ρ · ρ̇, (75)

S̈lin = −2(||ρ̇||2 + ρ · ρ̈), (76)
...
S

lin
= −6ρ̇ · ρ̈− 2ρ ·

...
ρ . (77)

Substituting equations (63) and (65) into equations (75)
and (76) for ρ1, we find that almost all terms cancel,
leaving us with the simple result

Ṡlin
1 = 0, (78)

S̈lin
1 = 2 tr {ρ1 tr

2
[H3, [H3, ρ]]} − 2||[H∗, ρ1]||2. (79)
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This means that, to second order in time, the entropy
production is completely independent of H1 and H2, de-
pending only on quadratic combinations of H3, weighted
by quadratic combinations of ρ. We find analogous re-
sults for the Shannon entropy S: If the density matrix
is initially separable, then Ṡ1 = 0 and S̈1 depends not
on the full Hamiltonian H, but only on its non-separable
component H3, quadratically.

We now have the tools we need to compute the auton-
omy of our “diagonal-sliding” system from the previous
subsection. As a simple example, let us take H1 to be
our Hamiltonian from equation (56) with its equispaced
energy spectrum, with n = 2b, so that we can view the
Hilbert space as that of b coupled qubits. Equation (59)
then gives an energy coherence

δH ≈ ~ω√
12

2b, (80)

so the probability velocity grows exponentially with the
system size b.

We augment this Hilbert space with one additional
“environment” qubit that begins in the state |↑〉, with
internal dynamics given by H2 = ~ω2σx, and couple it
to our subsystem with an interaction

H3 = V (x)⊗ σx (81)

for some potential V ; x is the position operator from
equation (58). As a first example, we use the sinusoidal
potential V (x) = sin(2πx/n), start the first subsystem
in the position eigenstate |x1〉 and compute the linear
entropy Slin

1 (t) numerically.
As expected from our qualitative arguments of the pre-

vious section, Slin
1 (t) grows only very slowly, and we find

that it can be accurately approximated by its Taylor ex-
pansion around t = 0 for many orbital periods T ≡ 2π/ω:

Slin
1 (t) ≈ S̈lin

1 (0) t2/2, where S̈lin
1 (0) is given by equa-

tion (79). Figure 14 shows the linear entropy after one
orbit, Slin

1 (T ), as a function of the number of qubits b
in our subsystem (top curve in top panel). Whereas
equation (81) showed that the dynamics increases expo-
nentially with system size (as 2b), the figure shows that
Slin
1 (T ) decreases exponentially with system size, asymp-

totically falling as 2−4b as b→∞.
Let us define the dynamical timescale τdyn and the in-

dependence timescale τind as

τdyn =
~
δH

, (82)

τind = [S̈lin
1 (0)]−1/2. (83)

Loosely speaking, we can think of τdyn as the time our
system requires to perform an elementary information
processing operation such as a bit flip [7], and τind as the
time it takes for the linear entropy to change by of order
unity, i.e., for significant information exchange with the
environment to occur. If we define the autonomy A as
the ratio

A ≡ τind
τdyn

, (84)

the autonomy of our subsystem thus grows exponen-
tially with system size, asymptotically increasing as A ∝
22b/2−b = 23b as b→∞.

As illustrated by Figure 11, we expect this exponen-
tial scaling to be quite generic, independent of interaction
details: the origin of the exponential is simply that the
size of the round dot in the figure is of order 2b times
smaller than the size of the square representing the full
density matrix. The independence timescale τind is ex-
ponentially large because the dot, with its non-negligible
elements ρij , is exponentially close to the diagonal. The
dynamics timescale τdyn is exponentially small because it
is roughly the time it takes the dot to traverse its own di-
ameter as it moves around at some b-independent speed
in the figure.

This exponential increase of autonomy with system
size makes it very easy to have highly autonomous sys-
tems even if the magnitude H3 of the interaction Hamil-
tonian is quite large. Although the environment contin-
ually “measures” the position of the subsystem through
the strong coupling H3, this measurement does not de-
cohere the subsystem because it is (to an exponen-
tially good approximation) a non-demolition measure-
ment, with the subsystem effectively in a position eigen-
state. This phenomenon is intimately linked to the quan-
tum Darwinism paradigm developed by Zurek and collab-
orators [30], where the environment mediates the emer-
gence of a classical world by acting as a witness, stor-
ing large numbers of redundant copies of information
about the system state in the basis that it measures. We
thus see that systems that have high autonomy via the
“diagonal-sliding” mechanism are precisely objects that
dominate quantum Darwinism’s “survival of the fittest”
by proliferating imprints of their states in the environ-
ment.

E. Boosting autonomy with optimized wave
packets

In our worked example above, we started our subsys-
tem in a position eigenstate |x1〉, which cyclically evolved
though all other position eigenstates. The slight decoher-
ence that did occur thus originated during the times when
the state was between eigenstates, in a coherent super-
positions of multiple eigenstates quantified by the most
wiggly curve in Figure 13. Not surprisingly, these wiggles
(and hence the decoherence) can be reduced by a better

choice of initial state |ψ〉 =
∑
k ψk|xk〉 =

∑
k ψ̂k|Ek〉 for

our subsystem, where ψk and ψ̂k are the wavefunction
amplitudes in the position and energy bases, respectively.
Equation (61) then gets generalized to

gn(φ) ≡ 〈x1|eiH
φ
ω |ψ〉 = e−i

n−1
2 φ

n−1∑
k=0

ψ̂ke
ikφ. (85)
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FIG. 14: The linear entropy increase during the first orbit,
S̈lin
1 (2π/ω), is plotted for as a function of the subsystem

size (number of qubits b). The interaction potential V (x)
is sinusoidal (top) and Gaussian (bottom), and the different
apodization schemes used to select the initial state are labeled
by their corresponding α-value, where α = 0 corresponds to
no apodization (the initial state being a position eigenstate).
Some lines have been terminated in the bottom panel due to
insufficient numerical precision.

Let us choose the initial state |ψ〉 that minimizes the
quantity ∫ π

−π
|gn(θ)|2w(θ)dθ (86)

for some penalty function w(θ) that punishes states giv-
ing large unwanted |g(θ)| far from θ = 0. This gives
a simple quadratic minimization problem for the vec-

tor of coefficients ψ̂k, whose solution turns out to be the
last (with smallest eigenvalue) eigenvector of the Toeplitz
matrix whose first row is the Fourier series of w(θ). A
convenient choice of penalty function 1− cosφ (see Fig-
ure 13), which respects the periodicity of the problem
and grows quadratically around its φ = 0 minimum. In
the n → ∞ limit, the Toeplitz eigenvalue problem sim-

plifies to Laplace’s equation with a ψ̂(φ) = cos φ2 winning
eigenvector, giving

ψk ≡
∫ π

−π
cos(kφ)φ̂(φ)dφ =

cos(πk)

1− 4k2
. (87)

The corresponding curve gn(φ) is plotted is Figure 13,
and is seen to have significantly smaller wiggles away
from the origin at the cost of a very slight widening of the
central peak. Figure 14 (top panel, lower curve) shows
that this choice significantly reduces decoherence.

What we have effectively done is employ the standard
signal processing technique known as apodization. Aside
from the irrelevant phase factor, equation (85) is simply

the Fourier transform of ψ̂, which can be made narrower

by making ψ̂ smoothly approach zero at the two end-
points. In the n → ∞ limit, our original choice corre-

sponded to ψ̂ = 1 for −π ≤ φ ≤ π, which is discontin-

uous, whereas our replacement function ψ̂ = cos φ2 van-
ishes at the endpoints and is continuous. This reduces
the wiggling because Riemann-Lebesgue’s lemma implies
that the Fourier transform of a function whose first d
derivatives are continuous falls off faster than k−d. By

instead using ψ̂(α)(φ) = (cos φ2 )α for some integer α ≥ 0,
we get α continuous derivatives, so the larger we choose
α, the smaller the decoherence-inducing wiggles, at the
cost of widening the central peak. The first five cases
give

ψ
(0)
k = δ0k, (88)

ψ
(1)
k =

cos(πk)

1− 4k2
, (89)

ψ
(2)
k = δ0k +

1

2
δ1,|k|, (90)

ψ
(3)
k =

cos(πk)

(1− 4k2)(1− 4
9k

2)
, (91)

ψ
(4)
k = δ0k +

2

3
δ1,|k| +

1

6
δ2,|k|, (92)

and it is easy to show that the α→∞ limit corresponds
to a Gaussian shape.

Which apodization is best? This depends on the in-
teraction H3. For our sinusoidal interaction potential
(Figure 14, top), the best results are for α = 1, when
the penalty function has a quadratic minimum. When
switching to the roughly Gaussian interaction potential
V (x) ∝ e4 cos(2πx/n) (Figure 14, bottom), the results
are instead seen to keep improving as we increase α, pro-
ducing dramatically less decoherence than for the sinu-
soidal potential, and suggesting that the optical choice
is the α → ∞ state: a Gaussian wave packet. Gaussian
wave packets have long garnered interest as models of ap-
proximately classical states. They correspond to general-
ized coherent states, which have shown to be maximally
robust toward decoherence in important situations in-
volving harmonic oscillator interactions [32]. They have
also been shown to emerge dynamically in harmonic os-
cillator environments, from the accumulation of many
independent interactions, in much the same way as the
central limit theorem gives a Gaussian probability distri-
bution to sums of many independent contributions [33].
Our results suggest that Gaussian wave packets may also
emerge as the most robust states towards decoherence
from short-range interactions with exponential fall-off.
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F. Optimizing autonomy when we can choose the
state: factorizable effective theories

Above we explored specific examples of highly au-
tonomous systems, motivated by approximately classical
systems that we find around us in nature. We found that
there are combinations of ρ, H and Hilbert space factor-
ization that provide excellent autonomy even when the
interaction H3 is not small. We will now see that, more
generally, given any H and factorization, there are states
ρ that perfect factorization and infinite autonomy. The
basic idea is that for states such that some of the spec-
tral density invariants pk vanish, it makes no difference
if we replace the corresponding unused eigenvalues of H
by others to make the Hamiltonian separable.

Consider a subspace of the full Hilbert space defined by
a projection operator Π. A projection operator satisfies
Π2 = Π = Π†, so its eigenvalues are all zero or one, and
the latter correspond to our subspace of interest. Let
us define the symbol l to denote that operator equality
holds in this subspace. For example,

A−B l 0 (93)

means that

Π(A−B)Π = 0. (94)

Below will often chose the subspace to correspond to low-
energy states, so the wave symbol in l is intended to re-
mind us that equality holds in the long wavelength limit.

We saw that the energy spectral density pn of equa-
tion (51) remains invariant under unitary time evolution,
so any energy levels for which pn = 0 will never have
any physical effect, and the corresponding dimensions of
the Hilbert space can simply be ignored as “frozen out”.
This remains true even considering observation-related
state projection as described in the next subsection. Let
us therefore define

Π =
∑
k

θ(pn)|En〉〈En|, (95)

where θ is the Heaviside step function (θ(x) = 1 if x > 0,
vanishing otherwise) i.e., summing only over those en-
ergy eigenstates for which the probability pn is non-zero.
Defining new operators in our subspace by

ρ′ ≡ ΠρΠ, (96)

H′ ≡ ΠHΠ, (97)

(98)

equation (95) implies that

ρ′ =
∑
mn

θ(pm)θ(pn)|Em〉〈Em|ρ|En〉〈En|

=
∑
mn

|Em〉〈Em|ρ|En〉〈En| = ρ, (99)

Here the second equal sign follows from the fact that
|〈Em|ρ|En〉|2 ≤ 〈Em|ρ|Em〉〈En|ρ|En〉9, so that the left
hand side must vanish whenever either pm or pn vanishes
— the Heaviside step functions therefore have no effect
in equation (99) and can be dropped.

Although H′ 6= H, we do have H′ l H, and this means
that the time-evolution of ρ can be correctly computed
using H′ in place of the full Hamiltonian H:

ρ(t) = Πρ(t)Π = ΠeiHtΠρ(0)Πe−iHtΠ = eiH
′tρ(0)e−iH

′t.

The frozen-out part of the Hilbert space is therefore com-
pletely unobservable, and we can act as though the sub-
space is the only Hilbert space that exists, and as if H′

is the true Hamiltonian. By working only with ρ′ and H′

restricted to the subspace, we have also simplified things
by reducing the dimensionality of these matrices.

Sometimes, H′ can possess more symmetry than H.
Sometimes, H′ can be separable even if H is not:

H l H′ = H1 ⊗ I + I⊗H2 (100)

To create such a situation for an arbitrary n×n Hamilto-
nian, where n = n1n2, simply pick a state ρ such that the
spectral densities pk vanish for all except n1 +n2− 1 en-
ergy eigenvectors. This means that in the energy eigenba-
sis, with the eigenvectors sorted to place these n1+n2−1
special ones first, ρ is a block-diagonal matrix vanishing
outside of the upper left (n1+n2−1)×(n1+n2−1) block.
Equation (50) shows that ρ(t) will retain this block form
for all time, and that changing the energy eigenvalues Ek
with k > n1 +n2− 1 leaves the time-evolution of ρ unaf-
fected. We can therefore choose these eigenvalues so that
H becomes separable. For example, for the case where
the Hilbert space dimensionality n = 9, suppose that pk
vanishes for all energies except E0, E1, E2, E3, E4, and
adjust the irrelevant zero-point energy so that E0 = 0.
Then define H′ whose 9 eigenvalues are 0 E1 E2

E3 E1 + E3 E2 + E3

E4 E1 + E4 E2 + E4

 . (101)

Note that H′ l H, and that although H is generically
not separable, H′ is separable, with subsystem Hamilto-
nians H′1 = diag {0, E1, E2} and H′2 = diag {0, E3, E4}.
Subsystems 1 and 2 will therefore evolve as a parallel
universes governed by H′1 and H′1, respectively.

G. Minimizing quantum randomness

When we attempted to maximize the independence for
a subsystem above, we implicitly wanted to maximize

9 This last inequality follows because ρ is Hermitian and positive
semidefinite, so the determinant must be non-negative for the
2× 2 matrix 〈Ei|ρ|Ej〉 where i and j each take the two values k
and l.
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the ability to predict the subsystems future state from
its present state. The source of unpredictability that
we considered was influence from outside the subsystem,
from the environment, which caused decoherence and in-
creased subsystem entropy.

Since we are interested in modeling also conscious sys-
tems, there is a second independent source of unpre-
dictability that we need to consider, which can occur even
if there is no interaction with the environment: “quantum
randomness”. If the system begins in a single conscious
state and unitarily evolves into a superposition of subjec-
tively distinguishable conscious states, then the observer
in the initial state has no way of uniquely predicting her
future perceptions.

A comprehensive framework for treating such situa-
tions is given in [34], and in the interest of brevity, we
will not review it here, merely use the results. To be able
to state them as succinctly as possible, let us first intro-
duce notation for a projection process “pr ” that is in a
sense dual to partial-tracing.

For a Hilbert space that is factored into two parts,
we define the following notation. We indicate the tensor
product structure by splitting a single index α into an in-
dex pair ij. For example, if the Hilbert space is the ten-
sor product of an m-dimensional and an n-dimensional
space, then α = n(i − 1) + j, i = 1, ...,m, j = 1, ..., n,
α = 1, ...,mn, and if A = B⊗C, then

Aαβ = Aii′jj′ = BijCi′j′ . (102)

We define ? as the operation exchanging subsystems 1
and 2:

(A?)ii′jj′ = Aii′j′j (103)

We define pr kA as the kth diagonal block of A:

(pr
k

A)ij = Akikj

For example, pr 1A is the m×m upper left corner of A.
As before tr iA, denotes the partial trace over the ith

subsystem:

(tr
1

A)ij =
∑
k

Akikj (104)

(tr
2

A)ij =
∑
k

Aikjk (105)

The following identities are straightforward to verify:

tr
1

A? = tr
2

A (106)

tr
2

A? = tr
1

A (107)

tr
1

A =
∑
k

pr
k

A (108)

tr
2

A =
∑
k

pr
k

A? (109)

tr pr
k

A = (tr
2

A)kk (110)

tr pr
k

A? = (tr
1

A)kk (111)

Let us adopt the framework of [34] and decompose
the full Hilbert space into three parts corresponding to
the subject (the conscious degrees of freedom of the ob-
server), the object (the external degrees of freedom that
the observer is interested in making predictions about)
and the environment (all remaining degrees of freedom).

If the subject knows the object-environment density
matrix to be ρ, it obtains its density matrix for the object
by tracing out the environment:

ρo = tr
e
ρ.

If the subject-object density matrix is ρ, then the sub-
ject may be in a superposition of having many different
perceptions |sk〉. Take the |sk〉 to form a basis of the
subject Hilbert space. The probability that the subject
finds itself in the state |sk〉 is

pk = (tr
2
ρ)kk, (112)

and for a subject finding itself in this state |sk〉, the object
density matrix is

ρ(k)o =
pr k ρ

pk
. (113)

If ρ refers to a future subject-object state, and the sub-
ject wishes to predict its future knowledge of the object,
it takes the weighted average of these density matrices,
obtaining

ρo =
∑
k

pkρ
(k)
o =

∑
k

pr
k
ρ = tr

s
ρ,

i.e., it traces out itself! (We used the identity equa-
tion (108) in the last step.) Note that this simple result
is independent of whatever basis is used for the object-
space, so all issues related to how various states are per-
ceived become irrelevant.

As proven in [35], any unitary transformation of a sep-
arable ρ will increase the entropy of tr 1ρ. This means
that the subject’s future knowledge of ρo is more un-
certain than its present knowledge thereof. However, as
proven in [34], the future subject’s knowledge of ρo will
on average be less uncertain than it presently is, at least if
the time-evolution is restricted to be of the measurement
type.

The result ρo = tr 1 ρ also holds if you measure the
object and then forget what the outcome was. In this
case, you are simply playing the role of an environment,
resulting in the exact same partial-trace equation.

In summary, for a conscious system to be able to pre-
dict the future state of what it cares about (ρo) as well
as possible, we must minimize uncertainty introduced
both by the interactions with the environment (fluctua-
tion, dissipation and decoherence) and by me (“quantum
randomness”). The future evolution can be better pre-
dicted for certain object states than for others, because
they are more stable against both of the above-mentioned
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sources of unpredictability. The utility principle from Ta-
ble II suggests that it is precisely these most stable and
predictable states that conscious observers will perceive.
The successful “predictability sieve” idea of Zurek and
collaborators [37] involves precisely this idea when the
source of unpredictability is environment-induced deco-
herence, so the utility principle lets us generalize this idea
to include the second unpredictability source as well: to
minimize apparent quantum randomness, we should pay
attention to states whose dynamics let them remain rela-
tively diagonal in the eigenbasis of the subject-object in-
teraction Hamiltonian, so that our future observations of
the object are essentially quantum non-demolition mea-
surements.

H. Optimizing autonomy when the state is given

Let us now consider the case where both H and ρ are
treated as given, and we want to vary the Hilbert space
factorization to attain maximal separability. H and ρ
together determine the full time-evolution ρ(t) via the
Schrödinger equation, so we seek the unitary transforma-
tion U that makes Uρ(t)U† as factorizable as possible.
For a pure initial state, exact factorability is equivalent
to ρ1(t) being pure, with ||ρ1|| = 1 and vanishing linear
entropy Slin = 1−||ρ1(t)||2, so let us minimize the linear
entropy averaged over a range of times. As a concrete
example, we minimize the function

f(U) ≡ 1− 1

m

m∑
i=1

|| tr
1

Uρ(ti)U
†||2, (114)

using 9 equispaced times ti ranging from t = 0 and t = 1,
a random 4×4 Hamiltonian H, and a random pure state
ρ(0).
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FIG. 15: The Hilbert-Schmidt norm ||ρ1|| is plotted for a ran-
dom pure-state 2-qubit system when factorizing the Hilbert
space in the original basis (black curve) and after a unitary
transformation optimized to keep ρ1 as pure as possible for
t ≤ 1 (red/grey curve).

The result of numerically solving this optimization
problem is shown in Figure 15, and we see that the new
factorization keeps the norm ||ρ1|| visually indistinguish-
able from unity for the entire time period optimized for.
The optimization reduced the average Shannon entropy
over this period from S ≈ 1.1 bits to S = 0.0009 bits.

The reason that the optimization is so successful is
presumably that it by adjusting N = n2 − n21 − n22 =
16 − 4 − 4 = 8 real parameters10 in U, it is able to
approximately zero out the first N terms in the Taylor
expansion of Slin(t), whose leading terms are given by
equations (75)- (77). A series of similar numerical exper-
iments indicated that such excellent separability could
generally be found as long as the number of time steps
ti was somewhat smaller than the number of free pa-
rameters N but not otherwise, suggesting that separa-
bility can be extended over long time periods for large
n. However, because we are studying only unitary evolu-
tion here, neglecting the important projection effect from
the previous section, it is unclear how relevant these re-
sults are to our underlying goal. We have therefore not
extended these numerical optimizations, which are quite
time-consuming, to larger n.

V. CONCLUSIONS

In this paper, we have explored two problems that are
intimately related. The first problem is that of under-
standing consciousness as a state of matter, “perceptro-
nium”. We have focused not on solving this problem,
but rather on exploring the implications of this view-
point. Specifically, we have explored five basic principles
that may distinguish conscious matter from other physi-
cal systems: the information, integration, independence,
dynamics and utility principles.

The second one is the physics-from-scratch problem:
If the total Hamiltonian H and the total density ma-
trix ρ fully specify our physical world, how do we ex-
tract 3D space and the rest of our semiclassical world
from nothing more than two Hermitian matrices? Can
some of this information be extracted even from H alone,
which is fully specified by nothing more than its eigen-
value spectrum? We have focused on a core part of this
challenge which we have termed the quantum factoriza-
tion problem: why do conscious observers like us perceive
the particular Hilbert space factorization corresponding
to classical space (rather than Fourier space, say), and
more generally, why do we perceive the world around us
as a dynamic hierarchy of objects that are strongly inte-
grated and relatively independent?

These two problems go hand in hand, because a generic

10 There are n2 parameters for U, but transformations within each
of the two subspaces have no effect, wasting n2

1 and n2
2 parame-

ters.
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Hamiltonian cannot be decomposed using tensor prod-
ucts, which would correspond to a decomposition of the
cosmos into non-interacting parts, so there is some op-
timal factorization of our universe into integrated and
relatively independent parts. Based on Tononi’s work,
we might expect that this factorization, or some gener-
alization thereof, is what conscious observers perceive,
because an integrated and relatively autonomous infor-
mation complex is fundamentally what a conscious ob-
server is.

A. Summary of findings

We first explored the integration principle, and found
that classical physics allows information to be essentially
fully integrated using error-correcting codes, so that any
subset containing up to about half the bits can be re-
constructed from the remaining bits. Information stored
in Hopfield neural networks is naturally error-corrected,
but 1011 neurons support only about 37 bits of integrated
information. This leaves us with an integration paradox:
why does the information content of our conscious expe-
rience appear to be vastly larger than 37 bits? We found
that generalizing these results to quantum information
exacerbated this integration paradox, allowing no more
than about a quarter of a bit of integrated information
— and this result applied not only to Hopfield networks
of a given size, but to the state of any quantum system of
any size. This strongly implies that the integration prin-
ciple must be supplemented by at least one additional
principle.

We next explored the independence principle and the
extent to which a Hilbert space factorization can decom-
pose the Hamiltonian H (as opposed to the state ρ) into
independent parts. We quantified this using projection
operators in the Hilbert-Schmidt vector space where H
and ρ are viewed as vectors rather than operators, and
conjectured that the best decomposition can always be
found in the energy eigenbasis, where H is diagonal. We
proved this conjecture for the n = 4 case and found nu-
merical evidence for it being true for all n. This leads
to a more pernicious variant of the Quantum Zeno Ef-
fect that we termed the Quantum Zeno Paradox: if we
decompose our universe into maximally independent ob-
jects, then all change grinds to a halt. Since conscious
observers clearly do not perceive reality as being static
and unchanging, the integration and independence prin-
ciples must therefore be supplemented by at least one
additional principle.

We then explored the dynamics principle, according
to which a conscious system has the capacity to not
only store information, but also to process it. We found

the energy coherence δH ≡
√

2 tr ρ̇2 to be a conve-
nient measure of dynamics: it can be proven to be time-
independent, and it reduces to the energy uncertainty
∆H for the special case of pure states. Maximizing dy-
namics alone gives boring periodic solutions unable to

support complex information processing, but reducing
δH by merely a modest percentage enables chaotic and
complex dynamics that explores the full dimensionality
of the Hilbert space. We found that high autonomy (a
combination of dynamics and independence) can be at-
tained even if the environment interaction is strong. One
class of examples involve the environment effectively per-
forming quantum-non-demolition measurements of the
autonomous system, whose internal dynamics causes the
non-negligible elements of the density matrix ρ to “slide
along the diagonal” in the measured basis, remaining
in the low-decoherence subspace. We studied such an
example involving a truncated harmonic oscillator cou-
pled to an external spin, and saw that it is easy to find
classes of systems whose autonomy grows exponentially
with the system size (measured in qubits). Generalized
coherent states with Gaussian wavefunctions appeared
particularly robust toward interactions with steep/short-
range potentials. We found that any given H can also be
perfectly decomposed given a suitably chosen ρ that as-
signs zero amplitude to some energy eigenstates. When
optimizing the Hilbert space factorization for H and ρ
jointly, it appears possible to make a subsystem history
ρ1(t) close to separable for a long time. However, it is
unclear how relevant this is, because the state projection
caused by observation also alters ρ1.

B. How does a conscious entity perceive the world?

What are we to make of these findings? We have not
solved the quantum factorization problem, but our re-
sults have brought it into sharper focus, and highlighted
both concrete open sub-problems and various hints and
clues from observation about paths forward. Let us first
discuss some open problems, then turn to the hints.

For the physics-from-scratch problem of deriving how
we perceive our world from merely H, ρ and the
Schrödingier equation, there are two possibilities: either
the problem is well-posed or it is not. If not, this would
be very interesting, implying that some sort of additional
structure beyond ρ and H is needed at the fundamen-
tal level — some additional mathematical structure en-
coding properties of space, for instance, which would be
surprising given that this appears unnecessary in lattice
Gauge theory (see Appendix C). Since we have limited
our treatment to unitary non-relativistic quantum me-
chanics, obvious candidates for missing structure relate
to relativity and quantum gravity, where the Hamiltonian
vanishes, and to mechanisms causing non-unitary wave-
function collapse. Indeed, Penrose and others have spec-
ulated that gravity is crucial for a proper understanding
of quantum mechanics even on small scales relevant to
brains and laboratory experiments, and that it causes
non-unitary wavefunction collapse [38]. Yet the Occam’s
razor approach is clearly the commonly held view that
neither relativistic, gravitational nor non-unitary effects
are central to understanding consciousness or how con-
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scious observers perceive their immediate surroundings:
astronauts appear to still perceive themselves in a semi-
classical 3D space even when they are effectively in a zero-
gravity environment, seemingly independently of rela-
tivistic effects, Planck-scale spacetime fluctuations, black
hole evaporation, cosmic expansion of astronomically dis-
tant regions, etc.

If, on the other hand, the physics-from-scratch prob-
lem is well-posed, we face crucial unanswered questions
related to Hilbert space factorization. Why do we per-
ceive electromagnetic waves as transferring information
between different regions of space, rather than as com-
pletely independent harmonic oscillators that each stay
put in a fixed spatial location? These two viewpoints
correspond to factoring the Hilbert space of the elec-
tromagnetic field in either real space or Fourier space,
which are simply two unitarily equivalent Hilbert space
bases. Moreover, how can we perceive a harmonic oscil-
lator as an integrated system when its Hamiltonian can,
as reviewed in Appendix B, be separated into completely
independent qubits? Why do we perceive a magnetic sys-
tem described by the 3D Ising model as integrated, when
it separates into completely independent qubits after a
unitary transformation?11 In all three cases, the answer
clearly lies not within the system itself (in its internal
dynamics H1), but in its interaction H3 with the rest of
the world. But H3 involves the factorization problem all
over again: whence this distinction between the system
itself and the rest of the world, when there are countless
other Hilbert space factorizations that mix the two?

C. Open problems

Based on our findings, three specific problems stand
in the way of solving the quantum factorization problem
and answering these questions, and we will now discuss
each of them in turn.

1. Factorization and the chicken-and-egg problem

What should we determine first: the state or the fac-
torization? If we are given a Hilbert space factorization
and an environment state, we can use the predictability
sieve formalism [37] to find the states of our subsystem
that are most robust toward decoherence. In some sim-
ple cases, they are eigenstates of the effective interaction
Hamiltonian H∗ from equation (64). However, to find

11 If we write the Ising Hamiltonian as a quadratic function of
σx-operators, then it is also quadratic in the annihilation and
creation operators and can therefore be diagonalized after a
Jordan-Wigner transform [36]. Note that such diagonalization
is impossible for the Heisenberg ferromagnet, whose couplings
are quadratic in all three Pauli matrices, because σ2

z -terms are
quartic in the annihilation and creation operators.

the best factorization, we need information about the
state. A clock is a highly autonomous system if we fac-
tor the Hilbert space so that the first factor corresponds
to the spatial volume containing the clock, but if the
state were different such that the clock were somewhere
else, we should factor out a different volume. Moreover,
if the state has the clock in a superposition of two macro-
scopically different locations, then there is no single op-
timal factorization, but instead a separate one for each
branch of the wavefunction. An observer looking at the
clock would use the clock position seen to project onto
the appropriate branch using equation (113), so the solu-
tion to the quantum factorization problem that we should
be looking for is not a single unique factorization of the
Hilbert space. Rather, we need a criterion for identifying
conscious observers, and then a prescription that deter-
mines which factorization each of them will perceive.

2. Factorization and the integration paradox

A second challenge that we have encountered is the
extreme separability possible for both H and ρ. In the
introduction, we expressed hope that the apparent inte-
gration of minds and external objects might trace back to
the fact that for generic ρ and H, there is no Hilbert space
factorization that makes ρ factorizable or H additively
separable. Yet by generalizing Tononi’s ideas to quantum
systems, we found that what he terms the “cruelest cut”
is very cruel indeed, able to reduce the mutual informa-
tion in ρ to no more than about 0.25 bits, and typically
able to make the interaction Hamiltonian H3 very small
as well. We saw in Section IV H that even the combined
effects ρ and H can typically be made close to separable,
in the sense that there is a Hilbert space factorization
where a subsystem history ρ1(t) is close to separable for
a long time. So why do we nonetheless perceive out uni-
verse as being relatively integrated, with abundant infor-
mation available to us from near and far? Why do we not
instead perceive our mind as essentially constituting its
own parallel universe, solipsism-style, with merely expo-
nentially small interactions with the outside world? We
saw that the origin of this integration paradox is the vast-
ness of the group of unitary transformations that we are
minimizing over, whose number of parameters scales like
n2 = 22b with the number of qubits b and thus grows ex-
ponentially with system size (measured in either volume
or number of particles).

3. Factorization and the emergence of time

A third challenge involves the emergence of time. Al-
though this is a famously thorny problem in quantum
gravity, our results show that it appears even in non-
relativistic unitary quantum mechanics. It is intimately
linked with our factorization problem, because we are
optimizing over all unitary transformations U, and time
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evolution is simply a one-dimensional subset of these
transformations, given by U = eiHt. Should the opti-
mal factorization be determined separately at each time,
or only once and for all? In the latter case, this would
appear to select only one special time when our universe
is optimally separable, seemingly contrary to our obser-
vations that the laws of physics are time-translation in-
variant. In the former case, the continuous change in
factorization will simply undo time evolution [9], making
you feel that time stands still! Observationally, it is ob-
vious that the optimal factorization can change at least
somewhat with time, since our designation of objects is
temporary: the atoms of a highly autonomous wooden
bowling ball rolling down a lane were once dispersed (as
CO2 and H2O in the air, etc.) and will eventually disperse
again.

An obvious way out of this impasse is to bring con-
sciousness back to center-stage as in Section IV G and
[29, 34, 35]. Whenever a conscious observer interacts
with her environment and gains new information, the
state ρ with which she describes her world gets updated
according to equation (113), the quantum-mechanical
version of Bayes Theorem [35]. This change in her ρ
is non-unitary and therefore evades our timelessness ar-
gument above. Because she always perceives herself in
a pure state, knowing the state of her mind, the joint
state or her and the rest of the world is always separa-
ble. It therefore appears that if we can one day solve the
quantum factorization problem, then we will find that the
emergence of time is linked to the emergence of conscious-
ness: the former cannot be fully understood without the
latter.

D. Observational hints and clues

In summary, the quantum factorization problem is
both very interesting and very hard. However, as op-
posed to the hard problem of quantum gravity, say, where
we have few if any observational clues to guide us, physics
research has produced many valuable hints and clues rel-
evant to the quantum factorization problem. The factor-
ization of the world that we perceive and the quantum
states that we find objects in have turned out to be ex-
ceptionally unusual and special in various ways, and for
each such way that we can identify, quantify and under-
stand the underlying principle responsible for, we will
make another important stride towards solving the fac-
torization problem. Let us now discuss the hints that we
have identified upon so far.

1. The universality of the utility principle

The principles that we listed in Table II were for con-
scious systems. If we shift attention to non-conscious
objects, we find that although dynamics, independence
and integration still apply in many if not most cases, the

utility principle is the only one that universally applies
to all of them. For example, a rain drop lacks significant
information storage capacity, a boulder lacks dynamics,
a cogwheel can lack independence, and a sand pile lacks
integration. This universality of the utility principle is
hardly surprising, since utility is presumably the reason
we evolved consciousness in the first place. This suggests
that we examine all other clues below through the lens of
utility, to see whether the unusual circumstances in ques-
tion can be explained via some implication of the utility
principle. In other words, if we find that useful conscious-
ness can only exist given certain strict requirements on
the quantum factorization, then this could explain why
we perceive a factorization satisfying these requirements.

2. ρ is exceptional

The observed state ρ of our universe is excep-
tional in that it is extremely cold, with most of the
Hilbert space frozen out — what principles might re-
quire this? Perhaps this is useful for consciousness
by allowing relatively stable information storage and
by allowing large autonomous systems thanks to the
large available dynamic range in length scales (uni-
verse/brain/atom/Planck scale)? Us being far from ther-
mal equilibrium with our 300K planet dumping heat from
our 6000K sun into our 3K space is clearly conducive to
dynamics and information processing.

3. H is exceptional

The Hamiltonian H of the standard model of particle
physics is of the very special form

H =

∫
Hr(r)d3r, (115)

which is seen to be almost additively separable in the
spatial basis, and in no other basis. Although equa-
tion (115) superficially looks completely separable just
as H =

∑
i Hi, there is a coupling between infinitesi-

mally close spatial points due to spatial derivatives in
the kinetic terms. If we replace the integral by a sum in
equation (115) by discretizing space as in lattice gauge
theory, we need couplings only between nearest-neighbor
points. This is a strong hint of the independence princi-
ple at work; all this near-independence gets ruined by a
generic unitary transformation, making the factorization
corresponding to our 3D physical space highly special;
indeed, 3D space and the exact form of equation (115)
could presumably be inferred from simply knowing the
spectrum of H.

H from equation (115) is also exceptional in that it
contains mainly quadratic, cubic and quartic functions
of the fermion and boson fields, which can in turn be
expressed linearly or quadratically in terms of qubit rais-
ing and lowering operators (see Appendix C). A generic
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unitary transformation would ruin this simplicity as well,
introducing polynomials of enormous degree. What prin-
ciple might be responsible for this?

4. The ubiquity of autonomy

When discussing the integration paradox above, we
worried about factorizations splitting the world into
nearly independent parts. If there is a factorization with
H3 = 0, then the two subsystems are independent for any
state, for all time, and will act as two parallel universes.
This means that if the only way to achieve high inde-
pendence were to make H3 tiny, the integration paradox
would indeed be highly problematic. However, we saw in
Section IV that this is not at all the case: it it quite easy
to achieve high independence for some states, at least
temporarily, even when H3 is large. The independence
principle therefore does not push us inexorably towards
perceiving a more disconnected world than the one we are
familiar with. The ease of approximately factoring ρ1(t)
during a significant time period as in Section IV H also
appears unlikely to be a problem: as mentioned, our cal-
culation answered the wrong question by studying only
unitary evolution, neglecting projection. The take-away
hint is thus that observation needs to be taken into ac-
count to address this issue properly, just as we argued
that it must be taken into account to understand the
emergence of time.

5. Decoherence as enemy

Early work on decoherence [23, 24] portrayed it mainly
as an enemy, rapidly killing off most quantum states,
with only a tiny minority surviving long enough to be
observable. For example, a bowling ball gets struck by
about 1025 air molecules each second, and a single strike
suffices to ruin any macrosuperposition of the balls po-
sition extending further than about an angstrom, the
molecular De Broigle wavelength [24, 39]. The successful
predictability sieve idea of Zurek and collaborators [37]
states that we will only perceive those quantum states
that are most robust towards decoherence, which in the
case of macroscopic objects such as bowling balls selects
roughly classical states with fairly well-defined positions.
The origin of the position basis as special thus traces back
to the environmental interactions H3 (with air molecules
etc.) probing the position, which in turn traces back to
the fact that H from equation (115) is roughly separa-
ble in the position basis. In terms of Table II, we can
view the predictability sieve as an application of the util-
ity principle, since there is clearly no utility in trying to
perceive something that will be irrelevant 10−25 seconds
later. In summary, the hint from this negative view of
decoherence is that we should minimize it, either by fac-
toring to minimize H3 itself or by using robust states on
which H3 essentially performs quantum non-demolition

measurements.

6. Decoherence as friend

Although quantum computer builders still view deco-
herence as their enemy, more recent work on decoher-
ence has emphasized that it also has a positive side: the
Quantum Darwinism framework [30] emphasizes the role
of environment interactions H3 as a valuable communica-
tion channel, repeatedly copying information about the
states of certain systems into the environment12, thereby
helping explain the emergence of a consensus reality [40].
Quantum Darwinism can also be viewed as an applica-
tion of the utility principle: it is only useful for us to
be aware of things that we can get information about,
i.e., about states that have quantum-spammed the en-
vironment with redundant copies of themselves. A hint
from this positive view of environmental interactions is
that we should not try to minimize H3 after all, but
should instead reduce decoherence by the second mech-
anism: using states that are approximate eigenstates of
the effective interaction H∗ and therefore get abundantly
copied into the environment.

Further work on Quantum Darwinism has revealed
that such situations are quite exceptional, reaching the
following conclusion [41]: “A state selected at random
from the Hilbert space of a many-body system is over-
whelmingly likely to exhibit highly non-classical correla-
tions. For these typical states, half of the environment
must be measured by an observer to determine the state
of a given subsystem. The objectivity of classical reality
— the fact that multiple observers can agree on the state
of a subsystem after measuring just a small fraction of
its environment — implies that the correlations found in
nature between macroscopic systems and their environ-
ments are very exceptional.” This gives a hint that the
particular Hilbert space factorization we observe might
be very special and unique, so that using the utility prin-
ciple to insist on the existence of a consensus reality may
have large constraining power among the factorizations
— perhaps even helping nail down the one we actually
observe.

E. Outlook

In summary, the hypothesis that consciousness can be
understood as a state of matter leads to fascinating in-
terdisciplinary questions spanning the range from neu-
roscience to computer science, condensed matter physics

12 Charles Bennett has suggested that Quantum Darwinism would
be more aptly named “Quantum Spam”, since the many redun-
dant imprints of the system’s state are normally not further re-
produced.



31

and quantum mechanics. Can we find concrete exam-
ples of error-correcting codes in the brain? Are there
brain-sized non-Hopfield neural networks that support
much more than 37 bits of integrated information? Can
a deeper understanding of consciousness breathe new life
into the century-old quest to understand the emergence
of a classical world from quantum mechanics, and can it
even help explain how two Hermitian matrices H and ρ
lead to the subjective emergence of time? The quests to
better understand the internal reality of our mind and
the external reality of our universe will hopefully assist

one another.
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products

Below is a list of useful identities involving tensor mul-
tiplication and partial tracing, many of which are used
in the main part of the paper. Although they are all
straightforward to prove by writing them out in the in-
dex notation of equation (102), I have been unable to
find many of them in the literature. The tensor product

http://www.biolbull.org/content/215/3/216.full
http://www.biolbull.org/content/215/3/216.full
http://i20smtp.ira.uka.de/home/grassl/codetables/
http://i20smtp.ira.uka.de/home/grassl/codetables/
http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf
http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf


32

⊗ is also known as the Kronecker product.

(A⊗B)⊗C = A⊗ (B⊗C) (A1)

A⊗ (B + C) = A⊗B + A⊗C (A2)

(B + C)⊗A = B⊗A + C⊗A (A3)

(A⊗B)† = A† ⊗B† (A4)

(A⊗B)−1 = A−1 ⊗B−1 (A5)

tr [A⊗B] = (tr A)(tr B) (A6)

tr
1

[A⊗B] = (tr A)B (A7)

tr
2

[A⊗B] = (tr B)A (A8)

tr
1

[A(B⊗ I)] = tr
1

[(B⊗ I)A] (A9)

tr
2

[A(I⊗B)] = tr
2

[(I⊗B)A] (A10)

tr
1

[(I⊗A)B] = A(tr
1

B) (A11)

tr
2

[(A⊗ I)B] = A(tr
2

B) (A12)

tr
1

[A(I⊗B)] = (tr
1

A)B (A13)

tr
2

[A(B⊗ I)] = (tr
2

A)B (A14)

tr
1

[A(B⊗C)] = tr
1

[A(B⊗ I)]C (A15)

tr
2

[A(B⊗C)] = tr
2

[A(I⊗C)]B (A16)

tr
1

[(B⊗C)A] = C tr
1

[(A⊗ I)B] (A17)

tr
2

[(B⊗C)A] = B tr
2

[(I⊗C)A] (A18)

tr
{

[(tr
2

A)⊗ I]B
}

= tr [(tr
2

A)(tr
2

B)] (A19)

tr
{

[I⊗ (tr
1

A)]B
}

= tr [(tr
1

A)(tr
1

B)] (A20)

(A⊗B,C⊗D) = (A,C)(B,D) (A21)

||A⊗B|| = ||A|| ||B|| (A22)

Identities A11-A14 are seen to be special cases of iden-
tities A15-A18. If we define the superoperators T1 and
T2 by

T1A ≡ 1

n1
I⊗ (tr 1A), (A23)

T2A ≡ 1

n2
(tr 2A)⊗ I, (A24)

then identities A19-A20 imply that they are self-adjoint:

(T1A,B) = (A,T1B), (T2A,B) = (A,T2B).

They are also projection operators, since they satisfy
T2

1 = T1 and T2
2 = T2.

Appendix B: Factorization of Harmonic oscillator
into uncoupled qubits

If the Hilbert space dimensionality n = 2b for some
integer b, then the truncated harmonic oscillator Hamil-

tonian of equation (56) can be decomposed into b inde-
pendent qubits: in the energy eigenbasis,

H =

b−1∑
j=0

Hj , Hj = 2j
(

1
2 0
0 − 1

2

)
j

= 2j−1σzj , (B1)

where the subscripts j indicate that an operator acts only
on the jth qubit, leaving the others unaffected. For ex-
ample, for b = 3 qubits,

H =

(
2 0
0 −2

)
⊗ I⊗ I + I⊗

(
1 0
0 −1

)
⊗ I + I⊗ I⊗

(
1
2 0
0 − 1

2

)

=



− 7
2 0 0 0 0 0 0 0
0 − 5

2 0 0 0 0 0 0
0 0 − 3

2 0 0 0 0 0
0 0 0 − 1

2 0 0 0 0
0 0 0 0 1

2 0 0 0
0 0 0 0 0 3

2 0 0
0 0 0 0 0 0 5

2 0
0 0 0 0 0 0 0 7

2


, (B2)

in agreement with equation (56). This factorization cor-
responds to the standard binary representation of inte-
gers, which is more clearly seen when adding back the
trace (n− 1)/2 = (2b − 1)/2:

H +
7

2
=

(
4 0
0 0

)
⊗ I⊗ I + I⊗

(
2 0
0 0

)
⊗ I + I⊗ I⊗

(
1 0
0 0

)

=



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 5 0 0
0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 7


. (B3)

Here we use the ordering convention that the most sig-
nificant qubit goes to the left. If we write k as

k =
b−1∑
j=0

kj2
j ,

where kj are the binary digits of k and take values 0 or
1, then the energy eigenstates can be written

|Ek〉 =
b−1
⊗
j=0

(σ†)kj |0〉, (B4)

where |0〉 is the ground state (all b qubits in the down
state), the creation operator

σ† =

(
0 1
0 0

)
raises a qubit from the down state to the up state, and
(σ†)0 is meant to be interpreted as the identity matrix
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I. For example, since the binary representation of 6 is
“110”, we have

|E6〉 = σ† ⊗ σ† ⊗ I|0〉 = |110〉,

the state where the first two qubits are up and the last
one is down. Since (σ†)kj

(
0
1

)
is an eigenvector of σz with

eigenvalue (2kj − 1), i.e., +1 for spin up and −1 for spin
down, equations (B1) and (B4) give H|Ek〉 = Ek|Ek〉,
where

Ek =

b−1∑
j=0

2j−1(2kj − 1)|Ek〉 = k − 2b − 1

2

in agreement with equation (56).
The standard textbook harmonic oscillator corre-

sponds to the limit b → ∞, which remains completely
separable. In practice, a number of qubits b = 200 is
large enough to be experimentally indistinguishable from
b = ∞ for describing any harmonic oscillator ever en-
countered in nature, since it corresponds to a dynamic
range of 2200 ∼ 1060, the ratio between the largest and
smallest potentially measurable energies (the Planck en-
ergy versus the energy of a photon with wavelength equal
to the diameter of our observable universe). So far, we
have never measured any physical quantity to better than
17 significant digits, corresponding to 56 bits.

Appendix C: Emergent space and particles from
nothing but qubits

Throughout the main body of our paper, we have lim-
ited our discussion to a Hilbert space of finite dimension-
ality n, often interpreting it as b qubits with n = 2b. On
there other hand, textbook quantum mechanics usually
sets n =∞ and contains plenty of structure additional to
merely H and ρ, such as a continuous space and various
fermion and boson fields. The purpose of this appendix
is to briefly review how the latter picture might emerge
from the former. An introduction to this “it’s all qubits”
approach by one of its pioneers, Seth Lloyd, is given in
[42], and an up-to-date technical review can be found in
[43].

As motivation for this emergence approach, note that a
large number of quasiparticles have been observed such as
phonons, holes, magnons, rotons, plasmons and polarons,
which are known not to be fundamental particles, but
instead mere excitations in some underlying substrate.
This raises the question of whether our standard model
particles may be quasiparticles as well. It has been shown
that this is indeed a possibility for photons, electrons and
quarks [44–46], and perhaps even for gravitons [43], with
the substrate being nothing more than a set of qubits
without any space or other additional structure.

In Appendix B, we saw how to build a harmonic oscil-
lator out of infinitely many qubits, and that a truncated
harmonic oscillator built from merely 200 qubits is exper-
imentally indistinguishable from an infinite-dimensional

one. We will casually refer to such a qubit collection de-
scribing a truncated harmonic oscillator as a “qubyte”,
even if the number of qubits it contains is not precisely
8. As long as our universe is cold enough that the very
highest energy level is never excited, a qubyte will behave
identically to a true harmonic oscillator, and can be used
to define position and momentum operators obeying the
usual canonical commutation relations.

To see how space can emerge from qubits alone, con-
sider a large set of coupled truncated harmonic oscillators
(qubytes), whose position operators qr and momentum
operators pr are labeled by an index r = (i, j, k) consist-
ing of a triplet of integers — r has no a priori meaning
or interpretation whatsoever except as a record-keeping
device used to specify the Hamiltonian. Grouping these
operators into vectors p and q, we choose the Hamilto-
nian

H =
1

2
|p|2 +

1

2
qtAq, (C1)

where the coupling matrix A is translationally invariant,
i.e., Arr′ = ar′−r, depending only on the difference r′−r
between two index vectors. For simplicity, let us treat
the lattice of index vectors r as infinite, so that A is
diagonalized by a 3D Fourier transform. (Alternatively,
we can take the lattice to be finite and the matrix A to
be circulant, in which case A is again diagonalized by a
Fourier transform; this will lead to the emergence of a
toroidal space.)

Fourier transforming our qubyte lattice preserves the
canonical commutation relations and corresponds to a
unitary transformation that decomposes H into indepen-
dent harmonic oscillators. As in [47], the frequency of the
oscillator corresponding to wave vector κ is

ω(k)2 =
∑
r

are
−iκ·r. (C2)

For example, consider the simple case where each oscilla-
tor has a self-coupling µ and is only coupled to its 6 near-
est neighbors by a coupling γ: a1,0,0 = a−1,0,0 = a0,1,0 =
a0,−1,0 = a0,0,1 = a0,0,−1 = −γ2, a0,0,0 = µ2+6γ2. Then

ω(κ)2 = µ2 + 4γ2
(

sin2 κx
2

+ sin2 κy
2

+ sin2 κz
2

)
, (C3)

where κx, κy and κz lie in the interval [π, π]. If we
were to interpret the lattice points as existing in a three-
dimensional space with separation a between neighboring
lattice points, then the physical wave vector k would be
given by

k =
κ

a
. (C4)

Let us now consider a state ρ where all modes except
long-wavelength ones with |κ| � 1 are frozen out, in the
spirit of our own relatively cold universe. Using the l
symbol from Section IV F, we then have H l H′, where
H′ is a Hamiltonian with the isotropic dispersion relation

ω2 = µ2 + γ2
(
κ2x + κ2y + κ2z

)
= µ2 + γ2κ2, (C5)
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i.e., where the discreteness effects are absent. Comparing
this with the standard dispersion relation for a relativistic
particle,

ω2 = µ2 + (ck)2, (C6)

where c is the speed of light, we see that the two agree if
the lattice spacing is

a =
c

γ
. (C7)

For example, if the lattice spacing is the Planck length,
then the coupling strength γ is the inverse Planck time.
In summary, this Hilbert built out of qubytes, with no
structure whatsoever except for the Hamiltonian H, is
physically indistinguishable from a system with quan-
tum particles (scalar bosons of mass µ) propagating in
a continuous 3D space with the same translational and
rotational symmetry that we normally associate with
infinite Hilbert spaces, so not only did space emerge,

but continuous symmetries not inherent in the original
qubit Hamiltonian emerged as well. The 3D structure of
space emerged from the pattern of couplings between the
qubits: if they had been presented in a random order, the
graph of which qubits were coupled could have been ana-
lyzed to conclude that everything could be simplified into
a 3D rectangular lattice with nearest-neighbor couplings.

Adding polarization to build photons and other vec-
tor particles is straightforward. Building simple fermion
fields using qubit lattices is analogous as well, except that
a unitary Jordan-Wigner transform is required for con-
verting the qubits to fermions. Details on how to build
photons, electrons, quarks and perhaps even gravitons
are given in [43–46]. Lattice gauge theory works simi-
larly, except that here, the underlying finite-dimensional
Hilbert space is viewed not as the actual truth but as
an numerically tractable approximation to the presumed
true infinite-dimensional Hilbert space of quantum field
theory.
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